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Abstract. Information about the future may be instrumentally useful yet scary. For exam-
ple, many patients shy away from precise genetic tests about their dispositions for severe
diseases. They are afraid that a bad test result could render them desperate as a result
of anticipatory feelings. We show that partially revealing tests are typically optimal when
anticipatory utility interacts with an instrumental need for information. The same result
emerges when patients rely on probability weighting. Optimal tests provide only two sig-
nals, which renders them easily implementable. While the good signal is typically precise,
the bad one remains coarse. This way, patients have a substantial chance to learn that they
are free of the genetic risk in question. Yet even if the test outcome is bad, they do not end
in a situation without hope.
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1. Introduction
It is one of the most elementary principles of decision
theory that agents prefer to have as much information
as possible beforemaking a decision.More information
allows agents to fine-tune their decisions. For example,
planning the future becomes easier when knowing the
challenges that lie ahead.
The following thought experiment may illustrate

why there are nevertheless contexts in which infor-
mation is not necessarily desirable: Imagine there was
a test that could determine whether you survive the
next t years or not. Set t to a relevant value, for exam-
ple, about half the time you expect to survive from now
on. Assume that for some reason you are entirely con-
fident about the accuracy of the test. Would you want
to get this information? Contrary to the reasoning in
the first paragraph, this is a question many people find
difficult to answer.
While most people are currently not confronted

with such a fundamental testing decision, people
under risk of having inherited Huntington’s disease
are. Huntington’s disease is a severe genetic disorder,
which breaks out around the age of 40. As more and
more cells get damaged by the disease, both men-
tal and physical health deteriorate. After some years,
patients end up in dementia and disability, needing
full-time care. Patients die 20 years younger than other
people on average. There is no cure for Huntington’s
disease. Children of patients have a 50% risk of having

inherited the disease (provided that exactly one parent
has it). Consequently, the risk for grandchildren is 25%.
Since the 1980s, a genetic test is available which allows
laboratories to almost perfectly determine if a person
will eventually get the disease.

People under risk often find it difficult to decide
whether to take the test or not. There are books solely
dedicated to this decision.1 Many people postpone the
decision; they wait for years before eventually taking
the test. The problem of testing for Huntington’s dis-
ease may seem like a—disturbingly severe—minority
problem. Yet it is likely that this type of problem
will become more widespread as research into human
genetics progresses and more and more genetic dis-
positions become detectable. We employ this testing
decision as our running example in the following.

Our paper studies test design in this context. In our
model, we blend risk preferences regarding antici-
pated outcomes with instrumental information. Opti-
mal tests turn out to consist of two signals as follows.
The good signal is precise and proves that the patient
will stay healthy. The bad signal is coarse, implying
that the patient has to correct the patient’s Bayesian
belief of staying healthy downward. Yet there is still
hope that the disease will not break out as the bad sig-
nal is a pooling signal. Using the term “positive” as in
“HIV-positive,” the test thus does not yield false neg-
atives but allows for false positives. The optimality of
this test structure is robust to the absence of instrumen-
tal value of information if the patient’s anticipatory
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utility is partly concave and convex.2 It also remains
optimal if the patient applies probability weighting as
in Kahneman and Tversky (1979).3
This paper presents a simple but robust model that

aims at capturing why tests that provide life-changing
outcomes can be challenging. To this end, we blend
risk preferences regarding anticipated outcomes with
instrumental information. We study the design of opti-
mal tests in this setup. Optimal tests often turn out
to be coarse. They either provide a perfectly informa-
tive signal in the good domain—then the genetic risk
is absent—or they provide a coarse bad signal, which
means that the patient has to correct the patient’s hope
to stay healthy downward. In the latter case, there still
remains justified reason to hope that the disease will
not break out as the coarse signal emerges from pool-
ing. This differentiates the coarse test from the pre-
cise one.

This type of test is easily illustrated in terms of our
thought experiment from the beginning. Imagine that
with a probability of 50% you will survive the next t
years. Consider a test that provides only two outcomes:
If you will live for more than these t years, the test
reveals this with a probability of, say, 30%. In all other
cases, you receive a pooling signal that implies you
have to adjust your life expectancy slightly downward.
Thus, taking the test offers the possibility of getting
good news while you never receive information that
you will die within the next t years for sure. Taking
such a test may feel less scary than a precise one.
The medical literature has discussed the careful use

of precise tests extensively4 but has not looked into
the possibility of letting patients choose between pre-
cise and coarse tests. While new in medical testing,
randomized mechanisms are well established in a vari-
ety of other contexts. Examples range from complex
random procedures for determining start configura-
tions in sports contests (such as in the soccer World
Cup) to randomized pricing in the airline industry.5 We
emphasize in this paper that the technical progress in
the design of information structures allows for better
test design when it comes to crucial, potentially life-
changing tests as in medical contexts as well.
The key idea behind ourmodel is that an agent’s util-

ity at a given point in time is influenced not only by the
agent’s current situation but also by expected future
prospects. This is the anticipatory utility approach put
forward by Loewenstein (1987); see Section 1.1 formore
references. For a very simple example of anticipatory
utility, people look forward to holidays in Hawaii, and
this may lift their spirits even months before the jour-
ney begins. Notably, what influences their utility now is
not how those holidays will actually turn out to be, but
how they expect them to be. This idea is subtly yet cru-
cially different from the classical assumption that an
agent only takes into account the (discounted) utility

the agent enjoys at a later point in time when making
a decision.

Agreeing to receive a piece of information is, so to
say, equivalent to entering a gamble over anticipated
utility outcomes which—by Bayesian rationality—
leaves the status quo unchanged in expectation. Thus,
other factors aside, an agent who is risk-averse with
respect to anticipated utility will never want to receive
any information about the future while an agent who
is “risk-loving,” that is, eager to learn about the future,
would opt for precise information. The risk aversion
in our model is hence analogous to the standard con-
cept of risk aversion with the only difference being that
it applies to anticipated outcomes instead of realized
physical outcomes.

In addition to anticipatory utility, our model incor-
porates utility losses resulting from insufficient plan-
ning. Agents with better information make better deci-
sions, for example, better-suited career or family plans.
Under risk aversion regarding anticipated payoffs, this
leads to a trade-off. Getting more information allows
making better plans for the future, but it also increases
the risk of obtaining bad information that will lower
anticipatory utility.

Our model and analysis can easily be augmented to
include other behavioral aspects. Anticipatory utility
has been identified as a plausible factor in decisions
about receiving crucial information about the future.
There may be alternative or additional reasons why
patients shy away from medical tests. Likewise, avoid-
ing costs from less than optimal plans for the future
need not be the only argument in favor of perfectly
revelatory tests.6 We design optimal tests when there
are conflicting forces at work. As a concrete example,
we adapt the analysis to a setting where patients use
probability weighting to evaluate the likelihood of dif-
ferent health outcomes. The difference between being
healthy with a probability of 90% or 100% may be per-
ceived as much greater than the difference between
50% and 60%. This is the famous “underweighting
of high probabilities” pointed out by Kahneman and
Tversky (1979). Even in the absence of instrumental
information, probability weighting leads to the same
structure of optimal tests as before. Probability weight-
ing is thus a second, independent factor in favor of tests
that either deliver clear-cut good news or a coarse bad
signal.

1.1. Related Literature
The idea of anticipatory utility goes back to Bentham.7
Contributions such as Loewenstein (1987), Caplin and
Leahy (2001), Brunnermeier and Parker (2005), Epstein
(2008), Kadane et al. (2008), Golman and Loewenstein
(2016), and Baucells and Belezza (2017) have developed
concepts of anticipatory utility in behavioral economics
and decision theory.8 Building on this research, Caplin
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and Leahy (2004), Caplin and Eliaz (2003), Kőszegi
(2003, 2006), and Oster et al. (2013) study information
transmission in doctor–patient relationships. The main
distinction between our work and most of these contri-
butions is that we focus on the design of optimal tests
that can be partially revelatory.
Caplin and Leahy (2004) study testing decisions

under anticipatory utility yet in the absence of instru-
mental information. Kőszegi (2003, 2006) blend antic-
ipatory utility with costs of suboptimal decisions.
Kőszegi (2003) focuses on patients’ preferences with
regard to perfectly revelatory tests. Kőszegi (2006)
studies the exchange of information between doctor
and patient in a cheap-talk game in which the doctor
is severely limited in the doctor’s power to commit to
truthfulness. The patient has to choose between taking
a therapy or not. For the doctor, as the doctor cares
about the patient’s well-being, this creates an incen-
tive to downplay the severity of the patient’s illness
(as long as the patient still takes the therapy).9 Yet the
patient understands this, and therefore, the doctor can
only credibly release rough signals about the health
status of the patient.10 In a sense complementary to this
analysis, we focus on the case in which commitment is
possible as, for example, in genetic testing, hard infor-
mation can be generated in this case and the doctor
does not receive more information than the patient.
See also the discussion at the end of Section 2. Finally,
in an empirical study, Oster et al. (2013) show that
anticipatory utility canwell explain observed decisions
for and against taking the perfectly revelatory test for
Huntington’s disease.
To our knowledge, Caplin and Eliaz (2003) is the only

other paper that considers optimal test design under
anticipatory utility. The authors focus on tests for HIV.
They suggest partially revelatory certificates as a way
tomotivate agentswith anticipatory utility to get tested
at all. Caplin and Eliaz (2003) identify a testing proce-
dure that yields an “infection-free” equilibrium such
that HIV is no longer transmitted to healthy people.
The test is thus designedwith a different intent, namely
protecting healthy people. The well-being of an indi-
vidual patient is a potential constraint that does not
allow the test designer to implement the first best solu-
tion, which would be a perfectly revelatory test. Thus,
there is a conflict of interest between test designer and
potentially infected patients. This is different from our
analysis, in which the doctor’s and patient’s interests
are perfectly aligned. The goal is to identify the optimal
test according to an individual patient’s needs.

Eliaz and Spiegler (2006) argue that models of antic-
ipatory utility cannot capture the following stylized
fact: patients with a high prior expectation of being
healthy are more information-seeking than patients
with a low prior. As we demonstrate in Sections 4
and 5, their “impossibility result” does not apply if

tests including a coarse signal turn out optimal. We
find that the optimal test is often nonrevealing for small
priors yet partially revealing for large priors. We dis-
cuss the relation to Eliaz and Spiegler (2006) in detail
at the end of Section 4.

There has been some debate about revealed-pref-
erence foundations for anticipatory utility (Eliaz and
Spiegler 2006, Epstein 2008). Furthermore, it may be
difficult for a doctor to infer a patient’s exact prefer-
ences for information. Our contribution is, in a sense,
orthogonal to this discussion. We argue that the same
small family of tests emerges as optimal under a broad
class of preferences. Thus, offering the patient some
tests from that family can be a good idea even without
knowledge of the patient’s exact preferences.

From a technical point of view, our paper is related to
works on strategic conflict in information transmission:
Rosar (2017) also considers test design. The character-
ization of optimal signals in Kamenica and Gentzkow
(2011) crucially relies on a classical result from geo-
metric moment theory (Kemperman 1968), which is
also the key in our derivation of optimal tests. These
papers focus on problems caused by strategic interac-
tion between economic agents. We consider problems
caused by the need to control one’s own expectations.
In our model, there is no conflict of interest when it
comes to information transmission.

2. The Basic Model
Consider the following game between a receiver of
information (“the patient”) and a revealer of informa-
tion (“the doctor”). Doctor and patient share the goal
of maximizing the patient’s utility. They also have the
same information about the patient’s preferences and
the ex ante situation. There is an initially unknown
state of the world X that takes the values 1 and 0 with
commonly known probabilities p and 1− p. In applica-
tions such as genetic testing, such priors only hinge on
which relatives of a patient are known to have the dis-
ease. Throughout, X � 1 denotes the preferred outcome
(“the patient is healthy”). X � 0 denotes the unfavor-
able outcome (“the patient has a severe genetic muta-
tion and will become ill”). The timing of decisions is as
follows.

(i) The doctor designs a test for the patient. A test
is the specification of a joint distribution (S,X) such
that the marginal distribution of X is Bernoulli with
mean p, and S is a random variable correlated with X.
As it turns out,11 the optimal test necessarily takes only
two values. Hence, the doctor’s search space ultimately
reduces to a 2× 2 matrix specifying the joint distribu-
tion of (S,X).
(ii) The patient learns the joint distribution of S

and X and decides whether he wants to take the test
and observe the realization of S or not.
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(iii) The patient forms a Bayesian posterior belief B
about the distribution of X. If the patient has taken the
test, the patient’s belief to be healthy adjusts, B �P[X �

1 | S]. If the patient opted against the test, B remains
the prior belief, B � p.
(iv) The patient settles on a life plan, modeled as

choosing a value y ∈ [0, 1].
The shared goal is to optimize the patient’s expected

realized utility. Realized utility consists of three terms.

Uc(X)+ θUa(E[X | B])+ (1− θ)Up(X, y).

Note that the middle term involving Ua hinges on the
patient’s posterior expectations of being healthy. The
remaining two terms depend on the actual realiza-
tion of X. Here, the term Uc(X) captures the classical,
“physical” utility from being healthy or ill.
In the middle term, Ua(E[X | B]) captures anticipa-

tory utility. It is a function of the patient’s Bayesian pos-
terior expectation of X.12 A patient may feel miserable
knowing that the patient will become ill. Anticipating
this, the patient may want to avoid a too revelatory
test about the patient’s health condition. The patient is
thus averse to fluctuations in E[X | B]. Accordingly, we
assume Ua as increasing, continuous, and concave.13
The planning utility term Up models how the patient

can influence the patient’s condition by a careful choice
of life plan y. This term captures the instrumental
value of information. The function Up : {0, 1} × [0, 1]
→� has the property that for fixed x ∈ {0, 1}, Up(x , y)
is continuous in y and takes its unique maximum in
Up(x , x)� 0. Planning utility is thus maximal when the
patient knows the state of the world X and can choose
the best-suited life plan y � X. If the patient does not
know X, the patient cannot adjust the patient’s plans
optimally to the patient’s (future) health condition.
This leads to a (typically negative) utility out of subop-
timal planning, Up(X, y). For example, the patient may
want to opt for a different career plan, travel more or
take more leisure time, take better care of the patient’s
savings, or buy a home close to the patient’s fam-
ily instead of moving far away or even abroad if the
patient knows the patient is going to become ill even-
tually. Note that Up only captures deviations from the
overall utility that can be achieved for a given realiza-
tion of the health outcome X. In contrast, fluctuations
in the overall utility level depending on the health out-
come are covered by the classical term Uc(X).
The parameter θ ∈ [0, 1] captures how important

anticipations are compared with choosing a good life
plan. We later vary θ in order to investigate the inter-
play of the two terms.
We think of Uc , Ua , and Up as aggregates over all

future time periods, that is, discounted sums of future
physical utilities, future anticipations, and future util-
ity from having chosen a life plan y that is—ex post—
suboptimal. Likewise, the choice of life plan y should

be understood as an aggregate over many decisions
(occupational choice, investment and saving plans,
etc.). If we think of X as a genetic indicator of whether a
disease will eventually break out, the patient inevitably
observes X in the far future. Accordingly, the life plan y
only captures decisions made before that point in time.

Two simplifications are immediate. First, the physi-
cal utility term Uc(X) is unaffected by the testing deci-
sion. It thus does not play any role in the later analysis.
We therefore omit this term without loss of generality.
Second, the doctor will always propose the best possi-
ble test for the patient. This may be a test containing
pure noise from which the patient cannot learn any-
thing. We can thus assume without loss of generality
that the patient accepts the test in stage (ii).

We assume that the doctor can offer the test the
patient likes best. For instance, the doctor may send
instructions for generating the test to a medical labo-
ratory. With regard to genetic testing, many noisy sig-
nals can be created by mixing blood samples of dif-
ferent patients and just testing the mixed sample for
the genetic mutation of interest.14 Assume the blood
of two people at risk is mixed and then tested with a
precise test: If the mixed blood sample is clean, both
patients are free of the genetic mutation. If the mixed
blood sample contains the mutation, either one of the
patients carries the mutation, or both do. Of course,
another way to generate noisy signals is via computer-
ized, anonymous processes.

3. Optimization
In this section, we derive the general structure of opti-
mal tests. We apply backward induction. First, we op-
timize the patient’s planning decision in reaction to
a given posterior belief induced by the test. Taking
into account how the patient will react, we then opti-
mize over posterior beliefs. The resulting pairs of opti-
mal tests and life plans can be interpreted as per-
fect Bayesian equilibrium (PBE) of the doctor–patient
game. Yet as the interests of patient and doctor are
aligned, it is, in fact, irrelevant whether the patient or
the doctor designs the test. We can thus also interpret
the solution as the result of a two-stage optimization
executed by the patient.

Proposition 1 and Lemma 2 characterize, respec-
tively, the beliefs induced by an optimal test and the
optimal test itself. Proposition 2 describes how the opti-
mal test becomesmore revelatory if the costs of making
wrong decisions become more important compared
with the anticipatory effects.

Let us first consider the patient’s choice of y given
that B has taken the realization B � b. Ignoring terms
that are independent of y, the patient’s problem to
choose a good life plan y is given by

max
y

up(b , y), where up(b , y)�bUp(1, y)+(1−b)Up(0, y).
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Since up(b , y) is continuous in y ∈ [0, 1], an optimal
choice of y exists for all b. We denote it by y∗(b). The
planning utility given that the patient behaves opti-
mally is thus

u∗p(b)� up(b , y∗(b)).
Our first result shows that u∗p is convex in b.

Lemma 1. The function u∗p(b) is nonpositive, continuous,
and convex in b ∈ [0, 1] with u∗p(0)� u∗p(0)� 0.

All proofs are in the appendix. We now turn to
the doctor’s task of designing the optimal test for the
patient. We take an indirect approach. First, we deter-
mine the optimal belief B∗. Then, we construct a test
that induces this belief. To this end, denote byB the set
of random variables valued in [0, 1] that have mean p.
By Bayesian consistency, the doctor cannot induce any
belief outside of B as the prior needs to be preserved
in expectation.15 The set B thus encodes all possible
tests, including the special cases of perfect revelation
(B ∈ {0, 1}) and no revelation (B � p a.s.).

The doctor aims at maximizing the patient’s
expected utility, assuming the patient chooses the con-
ditionally optimal life plan y∗ based on the test result:

max
B∈B

E[V(B)], where V(b)�θUa(b)+(1−θ)u∗p(b). (1)

Here, we have ignored the term E[Uc(X)] since, by the
law of iterated expectations, it does not affect the max-
imization problem. Furthermore, we have used that
E[X | B]� B and thus Ua(E[X | B])�Ua(B). By assump-
tion, Ua is concave. Moreover, Lemma 1 has shown
that u∗p is convex. Thus, for θ ∈ (0, 1), the function V is
generally continuous but neither convex nor concave.
This stems from the conflict that lies at the heart of
the problem: the utility from choosing a good life plan,
E[u∗p(B)], demands resolution of uncertainty. Yet the
anticipatory utility term, E[Ua(B)], suggests avoiding
information.
The function Ua does not need to be globally concave

for this conflict to arise. As soon as V is nonconvex,
the optimal test should not be fully revealing for some
priors p. Similarly, our analysis is robust to further psy-
chological factors such as anxiety, curiosity, fear, etc.
The sole property of V that is used in the following is
that it is a continuous function.16 For instance, we could
add a term γF(b)modeling curiosity to the function V .
In order to capture that a more informative signal sat-
isfies the patient’s curiosity better, we could assume
that F is strictly convex. This would not require any
changes to our analysis (and we could conclude that
for sufficiently large γ the incentives for receiving as
much information as possible become dominant).17
The optimization problem (1) is a classical problem

in geometric moment theory, which was solved inde-
pendently by various authors in the 1950s. We refer
to Kemperman (1968) for an overview of the earlier

Figure 1. Construction of V̄

0 dl

V
V
–

Beliefs

U
til

ity

p dh 1

literature. To our knowledge, Richter (1957) contains
the first published statement of a result that immedi-
ately implies Proposition 1.18 For ease of reference, we
provide a short and nontechnical exposition of how to
solve (1), which is given in the proof of Proposition 1.

The key observation is that the patient’s utility from
the optimal test is given by V̄(p), where V̄ is the small-
est concave function greater than or equal to V . More-
over, the optimal test can be read off from the graph
of V̄ as is depicted in Figure 1.
For illustration, consider a test inducing a belief B

that takes only the two values dl < p < dh . The patient’s
utility from this test can be found graphically by con-
necting the points (dl ,V(dl)) and (dh ,V(dh)) and evalu-
ating the value of the resulting line segment at p. Since
V̄ can be characterized as the supremum over all line
segments that connect two points in the graph of V ,
V̄(p) is exactly what the optimal test can achieve. The
proof of Proposition 1 demonstrates this point in more
detail. It also shows that beliefs B that take more than
two values cannot achieve more than V̄(p).
Proposition 1. Denote by V̄ the smallest concave function
with V̄(b) ≥ V(b) for all b ∈ [0, 1]. Then a solution B∗ ∈B
to (1) is given as follows:

(i) If V̄(p)� V(p), then B∗ � p with probability 1.
(ii) If V̄(p) > V(p), denote by I � (bl , bh) ⊂ [0, 1] the

largest open interval with p ∈ I and V̄(b)>V(b) for all b ∈ I.
Then B∗ takes values bh and bl with probabilities

ph �
p − bl

bh − bl
and pl � 1− ph .

In both cases, E[V(B∗)]� V̄(p).
Existence of V̄ is ensured since the convex hull of the

graph of V exists and V̄ is the upper contour of that
convex hull. It is easy to check that B∗ is unique if there
are no subintervals of [0, 1] on which V is linear.

To get some more intuition for the objects in the
proposition, consider the case of θ � 0, that is, the
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case of a patient who only cares about early resolu-
tion of uncertainty. Then V is convex and accordingly,
V̄ is given by the straight line connecting (0,V(0)) and
(1,V(1)). In that case, V̄(b) > V(b) for all b ∈ (0, 1), and
the proposition implies that B∗ takes values 0 and 1
with probabilities 1 − p and p. Thus, the patient per-
fectly learns from the test whether X � 0 or X � 1. In the
case in which θ � 1, that is, for a patient whose inter-
ests are dominated by anticipatory utility, V is concave,
and thus, V̄ ≡ V . Accordingly, we are in case (i) of the
proposition, and the optimal belief B∗ coincides with
the prior p. Hence, the optimal test does not reveal any-
thing. In the case in which V and V̄ coincide on some
interval, it depends on the prior p whether the optimal
test should reveal something or not. Aswe show in Sec-
tion 4, one concrete class of examples in which optimal
tests are partially revealing in general is as follows: Ua
satisfies decreasing absolute risk aversionwhileUp cor-
responds to a quadratic distance between the ex post
optimal and the actual life plan.
Proposition 1 characterizes the structure of optimal

beliefs. In particular, it shows that optimal beliefs B∗ lie
in the subset B2 ⊂B. Here, B2 is defined as the set of
random variables on [0, 1] that have mean p and that
take only two values bl and bh , where bl ≤ bh . Thus, to
derive the optimal signals, it suffices to show that for
any B ∈B2, there exists a signal S that induces B. This
is the result of the following lemma.

Lemma 2. Fix 0 ≤ bl < p < bh ≤ 1 and consider the random
variable S with values in {“Good”, “Bad”} that is gener-
ated upon observing X as follows:
If X � 1, then

S �

{
“Good” with probability α,
“Bad” with probability 1− α.

If X � 0, then

S �

{
“Good” with probability β,
“Bad” with probability 1− β,

where α, β ∈ [0, 1] are given by

α �
bh

p
p − bl

bh − bl
and β �

1− bh

1− p
p − bl

bh − bl
.

The resulting belief B � P[X � 1 | S] only takes values in
{bl , bh} and E[B]� p.

Here, S � “Good” is better news than S � “Bad” since
it induces the higher posterior probability bh of the
good state of the world X � 1. It is straightforward to
rewrite the test of Lemma 2 in a way that X only needs
to be observed with some probability.
We close this sectionwith some qualitative results on

optimal tests. The first result confirms the intuition that
smaller values of θ—representing a higher significance
of the cost term—lead to more precise tests.

Proposition 2. Fix p ∈ (0, 1) and θ > θ′. Denote by
{bl , bh} and {b′l , b′h} the values taken by the optimal belief
under, respectively, θ and θ′. Then bl ≥ b′l and bh ≤ b′h . Thus
the optimal test under θ′ leads to beliefs that are closer to
knowledge of X than the optimal test under θ.
The next result further illustrates the structure of

optimal tests and states the following: Consider only
tests that take two values and fix the lower of the
induced beliefs dl to a value that is less informative
than optimal, dl ∈ (bl , p). What is the optimal induced
upper belief d∗h? Proposition 3 shows that d∗h ∈ (p , bh],
implying that if a test is less informative than optimal
in one direction, it is best to leave it less informative
than optimal in the other direction, too.
Proposition 3. Define the prior p and the values of an opti-
mal belief {bl , bh} as in Proposition 1. Assume that bl <
p < bh and fix some dl ∈ (bl , p). For dh ∈ (p , 1), denote by
D(dl , dh) ∈ B the random variable with mean p that takes
only values dl and dh . Assume there exists dh such that
E[V(D(dl , dh))] > E[V(p)] so that some beliefs D(dl , dh)
are better than no information. Then, if d∗h is a solution to

max
dh

E[V(D(dl , dh))],

it must hold that d∗h ≤ bh .
We have considered the case in which dl is fixed and

dh is variable. The argument for the opposite case is
analogous.

4. Accuracy on Good News
Even though the optimal test is simple in the sense
that it just provides two potential results, there may
still be challenges when designing it. In this section,
we restrict the functions Ua( · ) and Up( · , · ) a bit more.
The quality of a life plan will hinge on how far away
it is from the ex post optimal one, and the patient will
be specifically scared about receiving very bad news.
Designing the optimal test then reduces to determin-
ing one single parameter. The optimal test structure
becomes as follows: the test may perfectly reveal the
good state of the world, but it never perfectly reveals
the bad state. In other words, there are no false sig-
nals of disease-freeness while false positives occur.
A patient thus either learns that the patient remains
healthy for sure, or the patient receives a pooling sig-
nal. In the latter case, the patient’s belief of staying
healthy is corrected downward but not to zero.19 In
the terminology of Lemma 2, the optimal test is char-
acterized by α ∈ (0, 1) and β � 0. Such a test structure
emerges, for example, if V is concave on pessimistic
beliefs and convex on optimistic ones as we see in the
following.
Assumption 1. Let V be continuously differentiable and
assume there exists a point bc ∈ (0, 1) such that V(b) is
strictly concave on [0, bc] and strictly convex on [bc , 1].
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The idea is that for pessimistic beliefs about staying
healthy, the anticipatory utility term is dominant while
the cost term dominates for optimistic beliefs. Such
situations occur if costs of making suboptimal plans
hinge on the distance to the ex post optimal plan while
anticipatory utility ismore sensitive to small changes in
beliefs near the undesirable diagnosis X � 0. If patients
are specifically scared of ending in a situation of no
or very little hope, this assumption should be fulfilled.
The following example provides concrete functional
assumptions on Ua and Up that describe such a setting.
The calculations are in the appendix.

Example 1. Suppose Ua is three times continuously
differentiable with U′′′a > 0. For x ∈ {0, 1}, the function
Up(x , y) is given by Up(x , y) � −(x − y)2. In this case,
there exist thresholds θl ≤ θh in [0, 1] such that V is
strictly concave for θ ≥ θh and strictly convex for θ ≤ θl .
For all θ ∈ (θl , θh), there exists a point bc ∈ (0, 1) such
that V(b) is strictly concave on [0, bc] and strictly con-
vex on [bc , 1].

In the example, either anticipatory utility or plan-
ning concerns dominate for extreme values of θ. This
leads to perfectly revelatory or nonrevelatory optimal
tests. For intermediate values of θ, we are in the set-
ting of Assumption 1. Anticipatory utility dominates
at pessimistic beliefs while planning utility dominates
for optimistic beliefs. The idea behind the example is
the following. Regarding anticipations, learning a bit
more feels particularly risky if very bad outcomes are
possible.20 With regard to the utility losses from an
unsuitable life plan, it is only the distance to the ex post
optimal plan that matters.
A different type of setting that satisfies Assumption 1

arises when the instrumental value of information is
absent (or negligible), θ � 1, but when the function Ua
itself is first concave and then convex. This corresponds
to a patient who is reluctant to receive bad news but
curious about good news. See Baucells and Belezza
(2017) for some foundations for this shape of Ua . In Sec-
tion 5, we demonstrate that the interplay of concave Ua
with certain forms of probability weighting can effec-
tively lead to similar situations.
In the concave–convex setting of Assumption 1, the

function V̄ has a particularly simple structure depicted
in Figure 2. There exists bt ≥ 0 such that V̄ is identi-
cal to V for b ≤ bt . Over the interval (bt , 1), it is given
by the straight line connecting (bt ,V(bt)) and (1,V(1)).
Accordingly, the optimal test induces posterior beliefs
bt or 1. The case bt � 0 corresponds to the case in which
the straight line connecting (0,V(0)) and (1,V(1)) dom-
inates the graph of V for all b. In this case, full revela-
tion is optimal at all priors. Otherwise, as illustrated in
the figure, bt is the unique point at which the tangent
to V passes through (1,V(1)).

Figure 2. Construction of V̄ Under Assumption 1

0 bt

V

V

Beliefs

U
til

ity

bc p 1

–

Proposition 4. Under Assumption 1, there exists bt ∈ [0, 1]
such that the optimal test is as follows.

(i) If p ≤ bt , the optimal test is perfectly nonrevealing, for
example, α � β � 0.
(ii) If p > bt , the optimal belief B∗ takes only values bl � bt

and bh � 1. The resulting optimal test is given by

α �
1
p

p − bt

1− bt
and β � 0.

Here, α and β are as defined in Lemma 2. Thus, for bt > 0,
the optimal test sometimes reveals X � 1 but never X � 0.

The analysis in this section shows that simple binary
tests with α ∈ [0, 1] and β � 0 may be promising candi-
dates to include into menus of tests. If a doctor wishes
to propose some test options to a patient—in addition
to the perfectly revelatory and perfectly nonrevelatory
tests represented by α ∈ {0, 1} and β � 0—it might be
a good starting point to include a discretization of the
range of α, for example, the three tests corresponding
to α ∈ { 1

4 ,
1
2 ,

3
4 }, and β � 0.

In the case bt > 0 of Proposition 4, we see that
patients with a small prior probability of the favor-
able outcome21 refuse any further information. Patients
with a larger prior will instead like a partially revealing
test best.22 The demand for information thus depends
on the prior.

In contrast, Eliaz and Spiegler (2006) have argued
that anticipatory utility cannot explain this intuitive
type of preference reversal (see their Example 2). Their
critique is based on the following result (their Proposi-
tion 2): Suppose the fully revealing test is either the best
possible or the worst possible test for p close to 0 or for
p close to 1. Then, the fully revealing test is either best
or worst for all p ∈ [0, 1].23 Yet note that this claim does
not stand in conflict with our results.24 For bt > 0, the
fully revealing test is never optimal. For all priors, full
revelation is dominated either by no revelation or by
partial revelation. With a similar argument, one finds
that full revelation is never the worst either. Instead, a
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partially revealing test turns out as the worst for small
priors, and a perfectly nonrevealing test is worst for
large priors.25 Thus, under Assumption 1, the premise
of the analysis of Eliaz and Spiegler (2006) that full rev-
elation is either best or worst is typically not fulfilled.

5. Biased Perceptions of Probabilities
The previous section showed that optimal tests are
more accurate on good than on bad news whenever
Assumption 1 is fulfilled, that is, whenever the func-
tion V is concave up to some point and convex from
there on. This section demonstrates that such situ-
ations also arise if the patient relies on probability
weighting—even if there is no instrumental value of
information. Probability weighting, that is, a biased
perception of probabilities, is thus an alternative argu-
ment in favor of the structure of optimal tests identified
in Proposition 4.
In the following, let us set the planning component

of overall utility to zero; that is, θ� 1. Unlike before, we
assume that the patient’s anticipatory utility does not
depend on the posterior belief B directly, but rather on
aweighted version w(B) of that belief. Such probability
weighting has been discussed extensively in the behav-
ioral literature, mostly in the context of prospect theory
and rank-dependent utility.26 Following that literature,
we assume that the probability weighting function w
is an increasing function with w(0) � 0 and w(1) � 1 so
that probabilities of certain events are evaluated cor-
rectly. Furthermore, the typical form of w is an inverse
S-shape: w grows quickly near 0 and near 1. The patient
thus perceives differences between intermediate prob-
abilities, for example, 40% and 70%, smaller than they
really are. To such a patient, a coarse test that involves
a clear-cut signal of disease-freeness may be specif-
ically appealing. The chance of learning to be per-
fectly healthy outshines the potential risk of bad, yet
still coarse, news. The following analysis confirms this
intuition.
The doctor’s test design problem now becomes

max
B∈B

E[V(B)], where V(b)� Ua(w(b)). (2)

When optimizing over potential tests, the doctor takes
an unbiased expectation over the patient’s long-term
well-being as affected by the respective test results.27 , 28
We assume that the function w is three times con-

tinuously differentiable and strictly increasing with
w(0) � 0 and w(1) � 1. Moreover, we assume that there
exists bc ∈ (0, 1) such that w is strictly concave over
[0, bc] and strictly convex over [bc , 1]. The latter is the
assumption of an inverse S-shape, which is satisfied by
the most common smooth probability weighting func-
tion, such as those of Tversky and Kahneman (1992)
and Prelec (1998), over the commonly studied parame-
ter regions. The following observation is immediate.

Corollary 1. Suppose that the patient’s anticipatory utility
is linear in perceived beliefs; that is, V(b) � w(b). Then V
satisfies Assumption 1.

Thus, even for a patient who is neutral to vari-
ations in biased probabilities, the optimal test is of
the form described in Proposition 4 and thus involves
coarse signals. This finding is in contrast to the case
V(p)� w(p)� p of unbiased perceptions of probabil-
ities, where any test is as good as any other since
E[V(B)]� p for any admissible B. We next return to the
case in which the patient is averse to variations in the
patient’s biased beliefs so that Ua is concave. Propo-
sition 5 formulates sufficient conditions such that the
interplay of Ua and w induces a function V that is
first concave and then convex and thus fulfills again
Assumption 1.

Proposition 5. Suppose Ua is twice continuously differ-
entiable and DARA; that is, −U′′a (x)/U′a(x) is decreasing.
Denote by h(y) � w−1(y) the inverse of w and assume
−h′′(y)/h′(y) is strictly increasing with limy↑1−h′′(y)/
h′(y) � ∞. Then, the function V(b) � Ua(w(b)) satisfies
Assumption 1.

Intuitively, what needs to be ensured for the result
is that the concavity of Ua dominates for small b while
the convexity of w dominates for large b. The DARA
assumption implies that Ua becomes increasingly less
concave. The assumption on h � w−1 goes in the oppo-
site direction. Being the inverse of w, h is S-shaped and
switches at bc from convexity to concavity. The “IARA”
assumption on probability weighting ensures that this
switch is also a local property so that the function first
becomes less and less convex and then more and more
concave.

Wenext show that theprobabilityweighting function
proposed by Prelec (1998) satisfies the requirements of
Proposition 5 over a wide range of parameters.

Proposition 6. Let

w(b)� exp(−κ(− log(b))ρ),

where ρ ∈ (0, 1) and κ < ρ−ρ. Then, for h(y) �
w−1(y), we have that −h′′(y)/h′(y) is increasing with
limy↑1−h′′(y)/h′(y)�∞.

The condition ρ ∈ (0, 1) guarantees that w has an
inverse S-shape rather than an S-shape. Moreover, as
ρ−ρ > 1, κ can take any value in [0, 1] and even larger
values. The result thus covers the one-parameter case
of Prelec’s probability weighting (κ � 1) but also many
cases with κ > 1 as long as κ does not become too large.
For instance, Wakker (2010) proposes ρ � 0.65 and κ �

1.05 as plausible values. With ρ � 0.65, the restriction
becomes κ ≤ ρ−ρ ≈ 1.32, which clearly includes the case
κ � 1.05.
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The probability weighting function resulting from
Tversky and Kahneman (1992)

w(b)� bρ

(bρ + (1− b)ρ)1/ρ

is analytically not as tractable as Prelec’s, but we can
easily verify visually that its curvature satisfies our
assumptions for common estimates of the parameter ρ.
Here, we make use of the fact that instead of mono-
tonicity of −h′′(y)/h′(y) we can equivalently study
monotonicity of w′′(b)/(w′(b))2 as is shown in the proof
of Proposition 5. As seen in Figure A.2 in the appendix,
the curve w′′(b)/(w′(b))2 is increasing and divergent at
b ↑ 1 in all cases. The values of ρ between 0.56 and 0.71
are taken from table 1 of Bleichrodt (2001), who reports
estimates from various studies.

6. Conclusion
Precise tests can be scary. Patients, for example,may shy
away from tests that reveal whether they have a hered-
itary disease anchored in their genes or not because of
anticipatory feelings.We show that if there is an instru-
mental need for information, such as career or family
planning, coarse test structures turn out optimal. Such
tests typically avoid providing precise bad news. They
give one of two signals: a precise good one or a coarse
bad one. The same test structure turns out optimal if
patients rely on prominent forms of probabilityweight-
ingwith regard to their anticipatory well-being.
Creating such binary tests that involve coarse sig-

nals is easy. One way is to work with pooled sam-
ples. If several blood samples of different patients are
mixed and only screened thereafter, the detection of
a marker of disease does not imply that all people in
the sample are concerned, but only that one certainly
is. Testing pooled samples has been frequently used in
other contexts. For example, to ensure safety of blood
transmission while keeping costs manageable, pooled
samples of donated blood are screened for infectious
diseases; compare for example, Stramer et al. (2000).
Another option is to work with computerized meth-
ods that involve randomization in the communication
between the doctor and the laboratory.

Our paper does not suggest giving up perfectly reve-
latory testing. Rather, it argues that in many situations,
providing a menu of tests including the precise test but
also coarse ones, would be good. This way, patients can
choose an information structure depending on their
needs and feelings. So far, if patients are too scared to
take the precise test, they are just left with the option
to walk away and learn nothing.

With regard to Huntington’s disease, some may
think of more conventional economic explanations for
avoiding the precise test. One may argue that conduct-
ing the test is costly or worry that finding a health

insurer becomes impossible if the test result is bad.29
But neither of these explanations can fully capture
what is going on. To see this, recall the thought exper-
iment from the introduction about a reliable test that
told you whether you would live for another t years.
The test in the thought experiment is costless. Assume
the test predicted only relatively early, sudden deaths.
Then, finding a health insurer becomes easy in case
of a bad test result. Still it remains difficult to decide
whether to take the test or not.
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Appendix A. Proofs
Proof of Lemma 1. By the assumption of Up , we immedi-
ately obtain u∗p ≤ 0 and u∗p(0) � u∗p(1) � 0. Fix a , b , ρ ∈ [0, 1]
and define m � ρa+ (1−ρ)b. Then by the optimality of y∗, we
have convexity:

u∗p(ρa + (1− ρ)b)
� (ρa + (1− ρ)b)Up(1, y∗(m))
+ (1− (ρa + (1− ρ)b))Up(0, y∗(m))

� ρUp(a , y∗(m))+ (1− ρ)Up(b , y∗(m))
≤ ρup(a , y∗(a))+ (1− ρ)up(b , y∗(b))
� ρu∗p(a)+ (1− ρ)u∗p(b).

Convexity over [0, 1] implies continuity over (0, 1). Continu-
ity in 0 follows from u∗p(0) � up(0, 0) � 0, and from the facts
that 0 ≥ u∗p(b) ≥ up(b , 0) and

lim
b→0

up(b , 0)� lim
b→0
(1− b)Up(0, 0)+ bUp(1, 0)� 0.

Continuity in 1 follows analogously. �

Proof of Proposition 1. We first show that E[V(B)] ≤ V̄(p)
for all B ∈ B and then construct B∗ such that it attains this
upper bound. For the upper bound, fix some B ∈ B and
observe that since V̄ is greater than or equal to V and concave
we obtain

E[V(B)] ≤ E[V̄(B)] ≤ V̄(E[B])� V̄(p)

by Jensen’s inequality. Therefore, we can, at most, achieve
V̄ evaluated at the prior belief p. Thus, B∗ � p is optimal
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whenever V(p) � V̄(p). To see that we can always achieve
V̄(p)we construct a random variable B∗ with

E[V(B∗)]� V̄(p)

for the other case in which V(p) < V̄(p). Note that, by its
minimality, V̄ is linear on all open intervals J with V(b) <
V̄(b) for all b ∈ J. Denote by I � (bl , bh) the largest interval
with the properties that p ∈ I and V(b) < V̄(b) for all b ∈ I.
Since this is the maximal interval, V and V̄ must coincide in
bl and in bh .30 Now choose B∗ as the unique random variable
that takes only values bl and bh and that has expected value p.
B∗ is given explicitly in the proposition. Since V and V̄ agree
on the two values of B∗ and by the linearity of V̄ on I, we have

E[V(B∗)]� E[V̄(B∗)]� V̄(E[B∗])� V̄(p)

and thus B∗ indeed attains the upper bound. �

Proof of Lemma 2. Applying Bayes’ rule, we immediately
obtain the requirements

P[X � 1 | S � “Good”]�
αp

αp + β(1− p) � bh

and

P[X � 1 | S � “Bad”]�
(1− α)p

(1− α)p + (1− β)(1− p) � bl .

Solving for α and β yields the solution given in the proposi-
tion. It remains to check that α, β ∈ [0, 1]. For β, this is clear
since it is the product of two fractions that obviously lie in
[0, 1] by 0 ≤ bl < p < bh ≤ 1. α ≥ 0 also follows immediately.
α ≤ 1 is a consequence of the fact that

p − bl

bh − bl
≤

p
bh
. �

Proof of Proposition 2. Since the optimal test is invariant to
multiplying V by a constant, we can reinterpret decreasing θ
as adding a convex function to V . Recalling the definition of
bl and bh as the boundaries of maximal intervals over which
V̄ strictly dominates V , the result follows from the following
claim: Let f be a convex function and denote by V + f the
smallest concave function greater than V + f . Then, if V̄ is
strictly greater than V on an open interval I, V + f is strictly
greater than V + f over I as well. The main step in proving
the claim consists of proving the inequality

V̄(b)+ f (b) ≤ V + f (b) (A.1)

for all b ∈ [0, 1]. To see this inequality, fix some q ∈ [0, 1],
denote by Bq the random variables on [0, 1] with mean q,
and denote by B∗V a solution to maxB∈Bq

E[V(B)]. Then by
Proposition 1 and the convexity of f we conclude

V̄(q)+ f (q)� max
B∈Bq

E[V(B)]+min
B∈Bq

E[ f (B)]

≤ V(B∗V )+ f (B∗V )
≤max

B∈Bq
V(B)+ f (B)

� V + f (q),

which proves (A.1). The claim now follows from (A.1) via

V(b) < V̄(b) ⇒ V(b)+ f (b) < V̄(b)+ f (b) ≤ V + f (b). �

Proof of Proposition 3. For fixed dl , the constrained optimal
test can be constructed as follows: For d ∈ (p , 1], define gd
as the straight line connecting (dl ,V(dl)) and (d ,V(d)). For
all dh , we have E[V(D(dl , dh))] � gdh

(p), and by assumption,
there exists dh such that gdh

(p) > V(p). Let g be the straight
line through (dl ,V(dl)) with the property that g has the
smallest slope among all straight lines that are greater than
or equal to V over [p , 1]. Clearly, g(p) ≥ E[V(D(dl , dh))] for all
dh ∈ (p , 1]. Moreover, by the continuity of V , this inequality is
an equality for some values of dh and, accordingly, g ≡ gdh

for
these values. Denote by d∗h the smallest value in [p , 1] such
that gd∗h

≡ g. By assumption, d∗h > p. Thus, we have identified
a constrained optimal belief D(dl , d∗h), and it remains to show
that d∗h ≤ bh . Note first that gbh

(b) ≤ gd∗h
(b) for all b > dl by

the definition of d∗h . Denote by f the straight line connecting
(bl ,V(bl)) and (bh ,V(bh)) and note that f (b) � V̄(b) for b ∈
[bl , bh] and f (b) ≥ V̄(b) for b ≥ bh by the concavity of V̄ . Since
f (dl) � V̄(dl) > V(dl) � gbh

(dl) and f (bh) � V(bh) � gbh
(bh), it

follows that gbh
(b) > f (b) for b > bh as both functions are

linear. Yet this implies that for b > bh

gd∗h
(b) > gbh

(b) > f (b) ≥ V̄(b) ≥ V(b).

Since gd∗h
(d∗h)� V(d∗h), we must have d∗h ≤ bh . �

Proof of Example 1. Wehave to show that the second deriva-
tive V′′(b) � θU′′a (b) + (1 − θ)u∗p ′′(b) switches signs at most
once and, if it does, then from negative to positive. Under
our assumption on Up(x , ·), the function u∗p(b) is given by
u∗p(b) � −b(1 − b), and thus, u∗p

′′(b) � 2 for all b. Since U′′a is
monotone, θU′′a (b) and (1 − θ)u∗p ′′(b) intersect at most once,
and it is easily checked that the resulting signs of V′′ match
the claims in the lemma. �

Proof of Proposition 4. The proof is organized as follows:
We state a characterization of the function V̄ in the setting
of Assumption 1. This is the content of Lemma 3 below. We
then show how to obtain the result the proposition from this
lemma. The proof of Lemma 3 follows at the end. The con-
struction of V̄ is depicted in Figure A.1. Define for z ∈ � the
linear function gz : [0, 1] → � as the straight line connecting
(0, z) and (1,V(1)). Pick a value z∗ such that gz∗ is tangential
to V at some point (bt ,V(bt)). Set V̄ equal to V on [0, bt] and
equal to gz∗ on [bt , 1]. In the picture, it is evident that this con-
struction yields a concave function that weakly dominates V .
Lemma 3 shows that this construction always works and that
the resulting function is indeed V̄ .

Lemma 3. Under Assumption 1, the function V̄ can be con-
structed as follows.

(i) If gV(0)(b) ≥ V(b) for all b ∈ [0, 1], set V̄ � gV(0) and bt � 0.
(ii) Otherwise, there exist a unique z∗ ∈ � and bt ∈ (0, bc] such

that gz∗ (b) ≥ V(b) for all b, and gz∗ is a tangent to V in bt . Set

V̄(b)�
{

V(b) if b ≤ bt ,
gz∗ (b) if b > bt .

The boundary case (i) of the lemma corresponds to the
situation in which the straight line connecting (0,V(0)) and
(1,V(1)) dominates the graph of V for all b. In this case,
full revelation is optimal at all priors (and we have bt � 0).
Case (ii) is the one depicted in Figure A.1. In that case, the
function V̄ is first concave and then linear, making the opti-
mal test prior-dependent. For p ≤ bt , we have V(p)� V̄(p) by
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Figure A.1. Construction of V̄ Under Assumption 1
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Proposition 3 and thus, again, the optimal test is nonreveal-
ing by Proposition 1. By Proposition 3, we also know that
V̄ is linear over [bt , 1]. Thus, for p > bt , a test that induces
beliefs bt or 1 attains V̄(p). By Proposition 1, it is thus an opti-
mal test. The explicit probabilities α and β then follow from
Lemma 2. �

Proof of Lemma 3. The proof proceeds in two steps: In the
first step, we show that the construction of V̄ in the state-
ment of the proposition is always valid, that is, that there
exists a unique function that can be constructed according to
the prescriptions in the proposition. Denote the constructed
function by V̂ . In the second step, we verify that V̂ � V̄ , that is,
that the constructed function is indeed the smallest concave
function dominating V .

Step 1: The construction of V̄ given in the proposition is
satisfied by a unique function V̂ .

Case (i) is clear, so we turn to case (ii). Note that since V is
a continuous function on a compact set (and thus bounded)
and since its derivative in b � 1 must be bounded from below
by strict convexity near 1, we can choose real numbers zl < zh
with the following properties: gzh

(b) > V(b) for all b < 1 and
gzl
(b) < V(b) for some b ∈ [0, 1]. Define the compact set Z �

[zl , zh] and define z∗ via

z∗ � inf{z ∈ Z | gz(b) >V(b) ∀ b ∈ [0, 1)}.

By the continuity of V and our choice of Z, this infi-
mum is actually attained. Since we are in case (ii), we also
know that z∗ > V(0) since gz is monotonic in z. Since gz∗ is
defined as an infimum over all gz that are greater than V
and since gz is continuous in z, it follows that there must
exist some bt ∈ (0, 1) for which gz∗ (bt) � V(bt). Here we can
exclude bt � 0 since z∗ > V(0). The functions gz∗ and V can-
not cross at this intersection because otherwise we could
increase z∗ slightly and still have an intersection, contradict-
ing the minimality of z∗. Thus, gz∗ and V must have the
same slope in bt ; that is, gz∗ is a tangent to V in bt . More-
over, we must have bt < bc : since V and gz∗ coincide in
bt and in 1, they must have the same average slope over
the interval [bt , 1]. This average slope equals their common
slope in bt , where they are tangential since gz∗ has con-
stant slope. This would immediately give a contradiction if

we had bt ≥ bc since, in that case, V would be strictly con-
vex (strictly increasing slope) over [bt , 1]. The uniqueness
of bt follows from the strict concavity of V over [0, bc]: a
strictly concave function cannot be tangential from below to
the same straight line at more than one point. Thus, we can
always construct the function V̂ described in the proposi-
tion. The resulting function is indeed concave since it equals
V on [0, bt] ⊂ [0, bc] and then continues with constant slope.
Moreover, by the definition of z∗, we have V̂(b) ≥ V(b) for
all b > bt .

Step 2: V̂ from Step 1 is indeed the smallest concave function
dominating V , V̂ ≡ V̄ .

Recall that the minimum of two concave functions is again
concave. Thus we must have V(b) ≤ V̄(b) ≤ V̂(b) for all b ∈
[0, 1]: if the second inequality was violated at some b, then
min(V̄ , V̂)would be a concave function dominating V , which
was strictly smaller than V̄ at some b, contradicting the min-
imality of V̄ . Since V and V̂ coincide on [0, bt] and in 1, they
must thus also coincide with V̄ at these values. Yet on the
remaining values (bt , 1), V̂ is linear, and thus, no concave
function that agrees with V̂ at the end points {bt , 1} can be
smaller. This proves V̄(b)� V̂(b) for all b ∈ [0, 1]. �
Proof of Proposition 5. We have to show that

V′′(b)� U′′a (w(b))w′(b)2 +U′a(b)w′′(b)

has exactly one interior zero and is negative to its left and
positive to its right. Writing V′′(b)� 0 as

−
U′′a (w(b))
U′a(w(b)

�
w′′(b)
(w′(b))2 ,

we notice that the left-hand side is positive and decreasing.
Furthermore, the right-hand side is continuous and posi-
tive from some interior point on. It remains to show that
our assumptions on h(y) � w−1(y) imply that w′′(b)/(w′(b))2
is increasing and diverges to +∞ for b ↑ 1. To see this,
we differentiate the identity w(h(y)) � y twice, to obtain
w′(h(y))h′(y)� 1 and

w′′(h(y))(h′(y))2 + w′(h(y))h′′(y))� 0.

Using these two identities, we find that

w′′(h(y))
w′(h(y))2 �−

h′′(y)
h′(y)

which, by strict monotonicity of h, completes the argument
as w′′/(w′)2, and −h′′/h′ are identical up to a monotonic
transformation. �

Proof of Proposition 6. The inverse h of w is given by

h(y)� exp(−λ(− log(y))γ)

where γ � 1/ρ > 1 and λ � κ−1/ρ . The condition κ < ρ−ρ

becomes λγ > 1. The first two derivatives of h are given by

h′(y)� h(y)
γλ

y
(− log(y))γ−1

and

h′′(y)�−h′(y)
(

γ− 1
y(− log(y)) −

γλ(− log(y))γ−1

y
+

1
y

)
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Figure A.2. Graph of w′′/(w′)2 for w of Tversky–Kahneman
Type, Depicted for ρ ∈ {0.56, 0.6, 0.61, 0.69, 0.71}
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Note. The ordering corresponds to the one from top to bottom at
b � 0.8.

so that the expression in brackets corresponds to r(y) �
−h′′(y)/h′(y). As y ↑ 1, the summand (γ − 1)/(y(− log(y)))
converges to +∞ while the other summands in r remain
bounded. Thus, r(y)→+∞ for y ↑ 1 as claimed. It remains to
show that r′ is positive. Taking derivatives and simplifying,
we see that r′ can be written as

r′(y)�
G(− log(y))

y log(y)2 ,

where

G(z)� (γ− 1)(1+ γλzγ − z)+ z · (γλzγ − z).

We thus have to show that G(z) > 0 for all z ≥ 0, that is, over
the whole range of − log(y). Defining

g(z)� (γ− 1)(1+ zγ − z)+ z · (zγ − z) ≥ 0,

it follows from γλ > 1 that G(z) > g(z) so that it suffices
to show g(z) ≥ 0. For z ≥ 1, we have zγ ≥ z, which implies
g(z) ≥ 0. For the case z ≤ 1, notice first that the function f (z)�
zγ − z is convex and has its unique minimum at z∗ � γ−1/γ ,
where it takes the value

f (z∗)�−γ−γ/(γ−1)(γ− 1).

We thus obtain the bound

g(z) ≥ (γ− 1)(1+ f (z∗))+ z · f (z∗).

Using that f (z∗) is negative, we find that this bound implies
g(z) ≥ 0 whenever

z ≤ −(γ− 1)
(
1+ 1

f (z∗)

)
� 1+ γγ/(γ−1) − γ.

As γ > 1 implies γγ/(γ−1) ≥ γ, we have thus shown g(z) ≥ 0 for
z ≤ 1 as well. �

Endnotes
1See, for example, Baréma (2005).
2See Section 4 as well as Baucells and Belezza (2017).
3See Section 5.
4For example, basic fertility tests, although cheap, are recommended
only to couples who have unsuccessfully tried for one year to become

pregnant; see the current guidelines of the CDC or the British NHS.
Recently, the PSA test (an indicator for prostate cancer) was criti-
cized heavily for being overused on patients; see, for example,Walter
et al. (2006).
5See also Kamenica andGentzkow (2011) for a recent contribution on
strategic randomization in information transmission as applicable,
for example, in litigation.
6Another reason could be curiosity, which, as we see, can be covered
by the analysis as well.
7See Read (2007) and Morewedge (2015) for overviews.
8For empirical tests, see, for example, Chan and Mukhopadhyay
(2010), Ganguly and Tasoff (2017), and Huck et al. (2015).
9The doctor would thus release messages such as “It looks basi-
cally fine, but we may nevertheless do the therapy to be on the safe
side . . . .”
10Kőszegi (2006) also briefly considers the case in which the doctor
can commit on truthful revelation. Yet under the doctor’s assump-
tions on preferences and costs, this always leads to full revelation.
11See Proposition 1.
12A credible testing procedurewill have to obey the rules of Bayesian
statistics. Resulting posteriors are communicated explicitly to the
patient. This rules out misperceptions of probabilities. For potential
effects of probability weighting, see Section 5.
13This assumption is in line with classical theories of anticipatory
utility as in Loewenstein (1987). As argued in Baucells and Belezza
(2017), there are also empirical indications that Ua is increasing and
switches from being concave to being convex at some point. This
captures that information avoidance may be limited to unfavorable
realizations. As discussed in Section 4, our main results on optimal
tests also cover this setting.
14 In other medical contexts, for example, to ensure safety of blood
donations, testing mixed samples is a known procedure for reducing
costs; see Section 6 for more discussion.
15 It can be shown that the doctor can induce any B ∈B; see Shmaya
and Yariv (2009). Since we first determine the optimum B∗ ∈B and
then implement it directly, this type of result is not needed here.
16This continuity is a convenient technical assumption since it
implies that V attains intermediate values, maxima and minima. It
can be relaxed at the expense of more complicated statements of the
results.
17Formally, a similar trade-off between concavity and convexity also
lies at the heart of the results of Kamenica and Gentzkow (2011)
on partial revelation in strategic information transmission. In their
setting, one agent, the sender, can observe the state of the world.
His utility depends on the decision made by another agent, the
receiver, who uses the information the receiver receives to maximize
the receiver’s own utility. When preferences are aligned, full revela-
tion is optimal in their setting. In contrast, in our analysis, it turns out
that full revelation is often dominated by less revelatory information
structures.
18For a broader perspective on moment problems, generalized
Chebychev inequalities, and applications in decision analysis, see
Smith (1995). The result is also a key ingredient in Kamenica and
Gentzkow’s (2011) analysis of strategic information transmission.
Earlier applications of similar techniques in the context of strategic
information transmission are found in Aumann andMaschler (1995).
19A similar class of tests was found optimal in Rosar (2017) in a
model of strategic conflicts in information transmission. Caplin and
Eliaz (2003) choose this type of test for implementing an “infection-
free” equilibrium in their model of testing for AIDS.
20Recall that Ua is concave, and thus, U′′a being increasingmeans that
U′′a (b) is closer to zero for larger b. The assumption of an increas-
ing second derivative of Ua , U′′′a > 0, was coined “prudence” by
Kimball (1990). It is a necessary condition for decreasing absolute
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risk aversion and thus satisfied by many of the standard utility
functions.
21These people are in a sad kind of lottery-like situation as they only
have a small chance of the good outcome.
22Moreover, under Assumption 1, patients with a sufficiently large
prior typically prefer complete information over no information. This
holds whenever the straight line connecting (0,V(0)) and (1,V(1)) is
greater than V near 1.
23This can be seen as follows: Proposition 1 implies that for any
prior full revelation can only be best or worst when the straight line
connecting (0,V(0)) and (1,V(1)) lies above or below the graph of V
for all b. This a global property that is prior-independent.
24Epstein (2008) provides an alternative reconciliation using richer
classes of preferences, which may depend on the prior in more gen-
eral ways than under classical, expectation-based anticipatory utility.
25The worst possible test can be read off from the smallest convex
function below V in an analogous fashion to the optimal test. As seen
in Figure 2, this smallest convex function is linear starting in (0,V(0))
until some point bw in the concavity region where it is tangential
to V . Theworst possible test induces beliefs bl � 0 or bh � bw for p < bw

while it is nonrevealing for p > bw .
26See Wakker (2010), especially chapter 7, for an introduction.
27A patient will likely have to live many years with a test result, such
that biases in risk perception could play important roles for the utility
the patient derives from that result. Studies document that patients
tend to estimate health risk from genetic disease with less bias than
risk resulting from unhealthy behavior (Weinstein 1984). This may
be driven by an illusion of control rather than by an unrealistic opti-
mismper se (compareMcKenna 1993). Yet alsowith regard to genetic
risk, biases in perception have been documented in patients (e.g.,
Erblich et al. 2000).
28A patient may be in addition short-term biased regarding proba-
bilities of test results. Yet such biases become irrelevant right after
the test has been conducted. We therefore assume that the doctor
optimizes the patient’s welfare taking into account how the patient
will feel about the test result in the decades to come but not how the
patient may distort the probabilities of test outcomes right before the
test is carried out.
29Whether this is the case depends on the country. Germany, for
example, does not allow health insurers to discriminate based on
genetic test results. For the relevant legal guidelines, see Gendiag-
nostikgesetz, Section 4, §18 (Bundesgesetzblatt, part I, 50:2535, 2009).
30 In particular, for the case of I � (0, 1) where this does not immedi-
ately follow from the definition of I, it is easy to check that by the
minimality of V̄ , V and V̄ always coincide in 0 and 1: otherwise, we
could modify V̄ on a small interval to make it smaller.
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