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Abstract

We analyze a market with rational firms knowing the distributions from

which their opponents’ qualities are drawn. Firms engage in price competi-

tion. Following Spiegler (2006a) we assume that consumers only see the firms’

prices and rely on word of mouth to judge the firms’ different qualities.

We prove equilibrium uniqueness for the special case of complete information

on the firms’ side. With this result, we characterize all equilibria of the in-

complete information model. Different equilibria generate identical payoffs for

the firms, but different welfare results. In the monotone pricing equilibrium,

welfare converges to zero in the number of firms.
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1 Introduction

There are plenty of markets in which consumers are not fully aware of the different

qualities of specialists and rely on word of mouth. Whereas consumers are unfamiliar

with the market, specialists know the market well: They know how good they

are, they have a good idea about their competitors’ qualities, and they know how

consumers search for them. Specialists act rationally.

Consumers who come into an unfamiliar market see the prices charged by the firms,

but not the different firms’ qualities. They rely on word of mouth to get a rough

idea about the qualities. If several firms seem to offer a good quality, consumers

focus on the prices as the ultimate selection device. Even though high quality

firms get recommended more often, they may have to compete in prices against

much lower quality firms if those get recommended as well. Anticipating this, firms

play a very different pricing game than in a traditional market model with rational

consumers. Competition is not necessarily beneficial in this market - as soon as

some firms compete against each other, welfare may decrease substantially. This is

the situation explored in this paper.

In the following, we mostly stick to markets for health care and health insurance

as leading examples. The “healers” in our model can hence be seen as specialized

therapists or as providers of health care insurance. Yet our analysis applies to any

market with which consumers are not familiar, such that they rely on anecdotal

evidence to judge the qualities of different firms, e.g. markets for car repair or

markets for financial advice. In these markets, prices are salient and easy to grasp,

but quality is not.

A large body of experimental research shows that anecdotes serve as a compelling
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and convenient tool for transporting information and influencing behavior.1 In the

medical literature, there is broad evidence that patients rely on anecdotal reason-

ing.2 Even if statistical information on different forms of therapy is available (which

often is not the case, e.g., for surgical treatments)3, patients tend to prefer to rely

on personal stories. Fagerlin et al. (2005) point out identification and emotional

feelings as driving factors behind this. Patients may find it much easier to identify

with a “natural person” than with the “statistically average person”.4 Additionally,

in situations of uncertainty, people are often driven by emotions, and anecdotes

transport more emotions than statistical results.5

Fagerlin et al. (2005) see another compelling characteristic about anecdotes in that

“anecdotal information often provides a clear dichotomy − either an individual was

cured or not” (p. 399). This kind of information may be much easier to grasp

for a lay person than some statistical percentage of getting cured, and hence be

much more easy to relate to. Indeed, most people have difficulties in understanding

percentages and basic statistical concepts. For example, the importance of sample

size is typically not recognized by untrained subjects. This has been shown in general

studies as well as in medical contexts like cancer treatment or cancer screening.6

We assume that patients rely on word of mouth regarding quality in an otherwise

standard market model: Patients only think about attending a healer if they heard

some good story about him, and avoid those healers on which they heard something

negative. When patients heard some favorable report about several healers, they opt

1See, e.g., Kahneman and Tversky (1973), Borgida and Nisbett (1977).
2Compare, e.g., Fagerlin et al. (2005) and the references therein and Enkin and Jadad (1998).
3Compare Gattellari et al. (2001) and McCulloch et al. (2002). McCulloch et al. (2002) state

that “treatments in general surgery are half as likely to be based on RCT [Randomised Control
Trials] evidence as treatments in internal medicine” (p. 1448).

4Compare also Jenni and Loewenstein (1997).
5Compare Loewenstein et al. (2001) and Finucane et al. (2000).
6Compare among others Tversky and Kahneman (1971), Hamill et al. (1980), Garfield and

Ahlgren (1988), Yamagishi (1997), Schwartz et al. (1997), Weinstein (1999), Lipkus et al. (2001),
Weinstein et al. (2004).
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for the recommended healer with the lowest price. The way we model the patients’

behavior is known as the S(1) rule (where S(1) stands for “sampling once”) and

goes back to Osborne and Rubinstein (1998). It has been applied as well by Spiegler

(2006a, 2006b), Rubinstein and Spiegler (2008) and Szech (2010). Of these papers,

Spiegler (2006a) is closest to the present study as we discuss below. Szech (2010)

complements our welfare analysis by shedding light on the case where healers choose

their qualities themselves, see the discussion in Section 5.3.

Besides S(1), other related approaches for modeling boundedly rational consumer

behavior are Ellison and Fudenberg’s (1995) “word-of-mouth learning” and Ra-

bin’s (2002) “law of small numbers”. Further related models from the literature

on bounded rationality are reviewed in Spiegler (2006a). More broadly, our paper

contributes to the literature on interactions between rational firms and boundedly

rational consumers as surveyed by Ellison (2006).

We generalize the model of Spiegler (2006a). He analyzes a market of quacks who

all have the same qualities and do not succeed better than some costless outside

option the patients could choose instead. In our model, healers have true healing

powers, but may differ strongly in their healing qualities. Additionally, we assume

that the healers do not know the qualities of their competitors perfectly: Healers

only know the distributions from which the qualities of their competitors are drawn.

Spiegler shows different types of market failure, e.g. that patients’ surplus may

fall in the number of quacks for a low overall number of quacks in the market.

Yet this negative effect of competition disappears if the number of quacks gets

larger. Harsh competition among many quacks drives the prices down. As the

quacks offer identical (low) qualities, patients fare better as competition becomes

strong. In contrast, in our model, both, patients’ surplus and overall welfare typically

increase for low numbers of healers, but start to decrease substantially when too

4



many healers are active. Both even go to zero if healers employ monotone price

strategies. This negative effect of competition is in stark contrast to the predictions

made by standard market models.

While our way of modeling anecdotal reasoning follows Spiegler, the logic behind

our results is novel: Through the introduction of incomplete information we obtain

pure equilibria which differ markedly from the mixed equilibria analyzed in Spiegler

(2006a) and Szech (2010). Even a tiny amount of uncertainty in the quality real-

izations allows for pure price strategies where better healers charge higher prices.

In this monotone equilibrium, patients who cannot properly distinguish between

qualities are naturally driven to low quality healers: Patients pick the healer with

the lowest price among all recommended healers. Thus they end up with the worst

healer among the recommended ones if prices are monotone in quality.

Let us at this point turn briefly to the political debate about the performance of

the US health insurance systems: In light of our results, it is not surprising that

recent research revealed that the Veterans Health Administration (VHA) often offers

better quality treatments than competitive health insurers in the US:7 In contrast

to most other medical insurers in the US, like Health Maintenance Organizations

(HMOs), the VHA does not stand in competition to other insurers. The patients of

the VHA typically stick with the institution for the rest of their lives. In contrast,

the customers of most other US insurance systems typically switch their health plans

on a regular basis. Hence competition plays a big role for most US health plans,

but not for the VHA.

Our model gives an intuition for why competition can be detrimental to welfare in

7See Brooks (2008) and Longman (2010). Based on 294 indicators of quality, Asch et al. (2004)
find that the VHA scores higher than all other sectors of American health care. Patients inside
the VHA receive significantly better adjusted overall quality, better chronic disease treatment and
preventive care.

5



the health insurance market: For patients, seeing prices of medical plans is easy.

Comparing myriads of different care plans for various health problems is difficult.

When choosing their insurance, patients may therefore screen the different medical

plans only with regard to coverage of a small sample of conditions. Alternatively,

they may rely on recommendations by other insured and their limited experiences.

Our analysis shows that in such a market, the choice among many insurers may lead

to patients ending up with medical plans of low quality.

That in the complex insurance market consumers may indeed focus on prices too

much is underpinned by the recent decision in Germany to legally cut back the price

competition among social health insurers to a minimum. The idea behind was to

force people to put their attention away from price differences to quality differences.8

Our model also contributes to explaining why many therapies that lack evidence of

therapeutical advantage compared to simpler therapies9 or placebos10 survive in the

health market. Even if a doctor has the best intentions, if his therapeutical method

does not help patients in the best possible way, patients should better go elsewhere.

To maximize overall well-being (welfare), only the best therapies should survive in

the market. Our model shows that even strong competition over patients who rely

on word of mouth does not drive out therapists of poor quality.

From a theoretical point of view, Ireland (1993) and McAfee (1994) analyze a closely

related game with a different interpretation, namely advertising, in mind: Competi-

8Compare the following statement by the German Federal Ministry of Health (2009), translated:
“The uniform insurance fee ends the unfair competition for the cheapest fee. Instead it opens a fair
competition for the best service and additional benefits to the insured.” Clearly, such “fairness”
considerations would be pointless with perfectly rational patients.

9For example, arthroscopic surgery, one of the most often performed surgeries with the aim of
lowering pain in arthritic knees, was only recently questioned by Kirkley et al. (2008), who doubt
the efficacy of this therapy. Kallmes et al. (2009) find that vertebroplasty, a commonly performed
spinal surgery to treat osteoporotic compression fractures, leads to no improvements in pain and
pain-related disability.

10Compare Fontanarosa et al. (1998).
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tion over consumers is modeled as in our study, yet firms know each others’ qualities

(or rather advertising intensities in their specification) for sure. We add to the analy-

sis of these two papers the equilibrium uniqueness in the pricing stage. The question

of equilibrium uniqueness had been pointed out by both authors as an open problem.

The uniqueness result stands in an interesting contrast to the multiplicity of equi-

libria in related models of price dispersion such as Varian’s model of sales (1980) or

the complete information all-pay auction.11 Equilibrium uniqueness in the complete

information case is a crucial step for characterizing all equilibria of our general game

with incomplete information.

Finally, let us point out that the natural definition of welfare is fundamentally

different for the market models studied by McAfee and Ireland, as there are no

differences in the firms’ service-qualities, but only in the firms’ advertising activities.

Thus, in these models, welfare increases in the number of firms.

The paper is structured as follows: Section 2 presents the model and describes in

detail the behavioral S(1) rule our patients follow. In Section 3, we characterize all

equilibria of the model where each healer’s quality may be drawn from a different

distribution function. As a by-product, we show equilibrium uniqueness for the

pricing game of Ireland (1993) and McAfee (1994). In Section 4, we assume that

the healers’ qualities are independently drawn from the same distribution F . We

characterize the equilibrium in monotone price setting strategies. We show that

as the number of healers gets large, overall welfare goes to zero. As an example,

we assume qualities to be uniformly distributed: Welfare starts to decrease (and

decreases substantially) in the number of healers as soon as there are more than

three healers in the market. Section 5 discusses the robustness of our results. Among

others, we discuss in Section 5.1 our choice of equilibrium selection by comparing our

11See Baye, Kovenock and de Vries (1992, 1996).
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model to a number of related models which make different assumptions on patients’

behavior. In Section 5.4 we present some survey evidence of S(1) behavior. Section 6

concludes. Appendix A contains proofs and Appendix B contains the questionnaire

for the results presented in Section 5.4.

2 The Model

We consider a market with n rational healers and a continuum of mass 1 of boundedly

rational patients. The quality αi of healer i is drawn from a distribution function Fi.

The Fi are commonly known by all healers, but not by the patients. The supports of

all Fi are assumed to be subsets of [0, 1]. Furthermore, we assume that the expected

quality αi of each healer i satisfies 0 < αi < 1. Without loss of generality, healers are

sorted by expected qualities, i.e., αi ≤ αj for i < j. Let E[·] denote the expectation

with respect to the αi. Initially, the patients are ill. They have a utility of 0 from

staying ill, and a utility of 1 from getting cured. A healer with quality α cures each

of his patients with probability α independently of the other healers.

The timing is as follows:

1. Each healer learns his personal quality realization αi. This information is

private.

2. The healers set their prices Pi simultaneously.

3. The patients decide whether to attend a healer and if so, which one.

4. Patients who consult healer i get cured with probability αi.

In Step 3, patients decide according to the behavioral rule S(1) as introduced by

Osborne and Rubinstein (1998), and as utilized in Spiegler (2006a). This rule works

as follows:
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• Each patient independently receives a signal on each healer.

• With probability αi, a patient receives a positive signal Si = 1 on healer i (“a

recommendation”).

• With probability 1− αi, a patient receives a negative signal Si = 0 on healer

i (“no recommendation”).

• A patient attends the healer with the highest Si−Pi, unless maxi Si−Pi < 0.

In that case the patient stays out of the market and expects a utility of 0 at

a price of 0.

The last point implicitly contains a tie-breaking rule: If a patient has to choose

between consulting a recommended healer at a price of one or staying at home, the

patient opts for the healer. It can be shown that no equilibrium exists if we depart

from this assumption. All other ties can be broken arbitrarily.

Note that patients rely far too much on the signal they get - they over-infer from

their sample. The idea behind the S(1) rule is to capture reliance on anecdotal

evidence in a simple way: Each patient independently asks some “former” client

of each healer.12 A client of healer i got cured with probability αi. Thus, with

probability αi, he recommends healer i to the patient. The patient perfectly trusts

this report - he either thinks the healer can cure him for sure or not at all.

Note that if a patient consults healer i his utility is 1 − Pi with probability αi and

−Pi otherwise. The S(1) rule is supposed to capture the idea that patients are not

familiar with how the market works in detail. In particular patients are not aware

of the healers’ qualities αi: Patients act as if some healers were always successful

and others never.

12Of course, this dynamic motivation is only for intuition, as we are in a static model here.
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Finally, an alternative interpretation of the S(1) rule is as follows: Assume the

healer is a health insurer and the quality of the insurer is given by the proportion of

medical problems covered by his insurance plan. Patients just sample each insurer

with regard to one random medical condition. Hence with probability αi they receive

the positive signal that the condition considered is covered by the insurance plan.

They then think this plan is a good one, in contrast to the plans on which they

received a signal of non-coverage. The medical condition a patient faces in the

future is independently drawn by nature.

3 Characterization of all Equilibria

In this section, we determine all equilibria of the model. For the analysis, it is

helpful to consider the model with deterministic qualities α1, ..., αn as well. This is

the special case of our model where the healers hold complete information about each

others’ qualities. This model has been analyzed by Ireland (1993) and McAfee (1994)

in the context of advertising. We add the uniqueness to their characterization of

equilibrium. This result is a crucial step towards the characterization of all equilibria

of the incomplete information game.

To put the equilibria we find into perspective, note that if the healers know each

others’ qualities perfectly, and if qualities are strictly between 0 and 1, standard

arguments yield that there cannot be an equilibrium in pure strategies: Each healer

has the possibility to earn a positive expected payoff as with some probability he

is the only recommended healer in the market.13 Hence each healer chooses a price

strictly higher than zero. Thus pure pricing strategies cannot constitute an equi-

librium, as there would always be a healer who would like to attract more patients

13Recall that patients never attend healers that are not recommended, as they expect a negative
utility of 0− Pi from attending them.
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by deviating to a slightly lower price. This is why in the game with complete in-

formation about qualities, the equilibrium must be in mixed strategies. The unique

mixed equilibrium of this game is given by Proposition 1.

Proposition 1 Define a sequence of prices p0, . . . , pn by

pi =
(1− αi+1) · . . . · (1− αn−1)

(1− αi)n−i−1

for 1 ≤ i ≤ n− 2,

p0 =
n−1∏
i=1

(1− αi)

and pn−1 = pn = 1. Then the unique Nash equilibrium of the complete information

game with qualities α1, ..., αn is the following: Each healer i mixes over the interval

[p0, pi] using the distribution function Hi defined as

Hi(p) =
1

αi

(
1− n−j

√
(1− αj) · . . . · (1− αn−1)

p

)
(1)

for p ∈ [pj−1, pj] ⊂ [p0, pi] with 1 ≤ j ≤ n − 1. On [0, p0], define Hi = 0 and, on

[pi, 1], Hi = 1. Hn places an atom of size 1− αn−1

αn
on 1.

The question of uniqueness of equilibrium in the complete information game with

qualities α1, ..., αn had been pointed out as an open problem by Ireland (1993) and

McAfee (1994).14 Spiegler (2006a) proves uniqueness of equilibrium for the special

cases where all healers offer the same quality and where all but one healers offer the

same low quality and one healer a higher quality.

In the complete information game with qualities α1, ..., αn, the payoff of healer i

from playing some price p while the other healers use the mixed strategies Hj is

14It is straightforward to generalize our uniqueness result to the more general demand functions
considered in McAfee (1994).
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given by

πi(p) = pαi
∏
j 6=i

(1− αjHj(p)). (2)

The intuition is as follows: In order to attract a patient and earn p, healer i has to

be recommended (which happens with probability αi) and has to be the cheapest

healer among those who are recommended. (The probability that a competitor j is

not both recommended and cheaper than p is 1 − αjHj(p).) We insert the explicit

formulas for the distribution functions Hj from Proposition 1 into (2). Then we can

calculate that the expected equilibrium payoff of healer i is given by

πi(p) = αi
∏
j 6=n

(1− αj) for all p ∈ [p0, pi].

From this we can deduce that the distribution functions Hi also form a Nash equi-

librium in the incomplete information game:

Proposition 2 The distribution functions Hi defined in (1) form a Nash equilib-

rium in the incomplete information game with qualities α1, ..., αn. In this equilib-

rium, the payoff of healer i is given by

πi = αi
∏
j 6=n

(1− αj).

Note that the equilibrium strategies of the healers do not depend on the realizations

of their qualities αi. Thus the healers do not make use of their private information.

The intuition is as follows: Once he got recommended to a patient, it does not matter

anymore for a healer how good or bad his quality actually is. For his competitors,

the exact quality of the healer plays no role either, as they do not know it: The

competitors can base their strategies only on the healer’s expected quality. Yet most

healers (that is to say all healers i 6= n if αn > αn−1) do incorporate their expected
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quality αi into their equilibrium strategies.

The next proposition establishes that the expected healers’ payoffs are the same in

all equilibria of the incomplete information game. Furthermore, all the equilibria are

interchangeable15: Any two equilibria A and A′ can be combined to form another

equilibrium A′′ by assigning to the healers their respective strategies from A or A′

in an arbitrary way. This is the extent to which the equilibrium uniqueness from

the complete information game with qualities α1, ..., αn carries over.

Proposition 3 A profile of strategies ((Gα1
1 )α1 , . . . , (G

αn
n )αn) is a Nash equilibrium

if and only if:

E[αiG
αi
i (p)] = αiHi(p) for all i (3)

and all Gαi
i have their support in [p0, pi].

Furthermore, the healers expect the same payoffs in all equilibria.

Obviously, there are infinitely many equilibria since each healer i can make his

strategy dependent on αi in an arbitrary way as long as (3) is satisfied. Notably, if

the noise in the αi is rich enough, pure price strategies are possible in equilibrium.

Proposition 4 Assume that the distribution functions Fi have continuous and strictly

positive densities fi on [0, 1]. Furthermore, assume that αn = αn−1. Then there is

a unique pure strategy equilibrium with strictly increasing price setting functions

P̄i(αi). Moreover,

P̄i(αi) = H−1
i

(∫ αi

0
βfi(β)dβ

αi

)
.

The randomness in the quality realizations allows the healers to remain unpre-

dictable competitors even if they choose a pure pricing strategy. Note that Propo-

sition 4 does not demand for much noise in the sense of a large variance. The main

15See Osborne and Rubinstein (1994), p. 23.
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requirement in Proposition 4 is that the qualities are drawn from atomless distribu-

tions. (An atom would force the healers to mix over prices in equilibrium.) For the

sake of brevity, we exclude the case of αn > αn−1. In that case all our arguments

still go through but, because of the atom in Hn, P̄n reaches the value 1 already for

some αn < 1 and then stays constant. Intuition clearly favors the monotone price

equilibrium over the other equilibria: It is natural to assume that a healer with a

higher quality charges a higher price. The same selection criterion among equilibria

is applied in the standard literature on auctions.

4 Welfare

In this section we focus on the symmetric case where the qualities of all healers i are

independently drawn from the same distribution Fi = F . We assume that F has a

continuous and strictly positive density f . Denote by α the mean of F . Hence α

is also the expected quality of a randomly drawn healer. We study welfare in the

monotone strategy equilibrium and show that it deteriorates an n gets large. At the

end, we compare our welfare results to those of the standard model where patients

act rationally, but hold only incomplete information about the healers’ qualities.

With the help of the results of the previous section we obtain the following monotone

pricing equilibrium:

Proposition 5 There is a unique equilibrium in monotonically increasing price

strategies. In this equilibrium, each healer i uses the price setting function

P̄ (αi) =

(
1− α

1−
∫ αi

0
βf(β)dβ

)n−1

.
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The expected equilibrium payoff of healer i is given by

πi = αi(1− α)n−1.

Conditional on his quality realization, each healer plays a pure pricing strategy.

From the payoffs we see that each healer i earns in expectation only his expected

maxmin payoff − the payoff he can earn for sure no matter what prices his competi-

tors choose: With an expected probability of (1−α)n−1, all the healer i’s competitors

are not recommended. With a probability of αi, he himself is recommended. Hence

with an expected probability of αi(1− α)n−1, healer i is the only one who is recom-

mended. Thus by charging a price of 1, healer i can secure an expected payoff of πi

to himself.

Denote by θn the healers’ aggregate payoffs in a market with n healers:

θn =
∑
i

E[πi] = nα(1− α)n−1. (4)

As one easily sees from (4), the healers’ aggregate payoffs may initially increase in n

if α is not too large but eventually converge to zero as n increases. The intuition is

as follows: With few healers and low qualities, competition is soft. Only few patients

are attracted by several healers, and many patients do not get recommended to any

healer at all. A new healer entering the market may attract most of his patients from

the group of patients that would otherwise stay at home. Thus the new healer does

not strengthen competition much. Yet if more and more healers enter the market,

even with low qualities, more and more patients get recommended to several healers.

Then price competition gets more and more severe, driving the healers’ payoffs down.

We have found that in expectation the healers’ payoffs go to zero as n gets large. But

does that mean that the patients are better off the more healers enter the market?
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At least, in the limit, patients do not have to pay anything for the healers’ services.

Yet it turns out that also patients fare badly: Recall that a patient always consults

the cheapest healer who is recommended to him because he thinks all recommended

healers are of the same high quality and just differ in prices. Yet as the healers apply

monotone price-setting strategies, by picking the cheapest the patient also picks the

worst of all recommended healers. Since the distribution function of qualities F has

support on the whole interval [0, 1], as many healers enter the market there is - with

high probability - also a considerable amount of very low quality healers, some of

which get recommended. Making this reasoning precise, one can see that as n gets

large, overall welfare converges to zero: No patient gets cured in the limit.

Proposition 6 Denote by γn the expected social welfare, i.e. the expected proportion

of patients cured, in the monotone equilibrium with n healers. Then

γn = n

∫ 1

0

α2

(
1−

∫ α

0

βf(β)dβ

)n−1

f(α)dα (5)

and

lim
n→∞

γn = 0.

Like the healers’ payoff θn, welfare γn is an expected value taken over the qualities

αi. The intuition behind formula (5) is the following: Consider the expected quality

of the treatment chosen by a patient: A quality α is chosen if a) the healer offering

that quality is recommended and b) all his competitors are either not recommended

or are charging a higher price. The probability of a) is α. The probability of b)

is
(
1−

∫ α
0
βf(β)dβ

)n−1
as charging a higher price is equivalent to offering a higher

quality in the monotone equilibrium.

Welfare may already decrease for a quite low number of healers. This is relevant as it

seems much more natural to think of a patient receiving an anecdote on each healer
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if the market is not too large. However, as pointed out in Spiegler (2006a), n can

also be interpreted as the number of healers a patient gets a report on in a market

with very many healers. Then n would be a measure of patients’ awareness.16 The

following example demonstrates that the effects at work are not only limit results

but already play an important role already for moderate numbers of healers. Figure

1 depicts welfare for the special case that qualities are uniformly distributed on [0, 1],

i.e. F (α) = α:

Figure 1: Expected social welfare γn for αi ∼ U [0, 1]

Figure 1 shows that welfare is maximized for n = 3 healers. With three or four

healers, the average quality a patient receives is slightly larger than the quality

of the average healer α = 1/2, as better healers are more often recommended.

Afterwards, less and less patients get cured, as most patients get recommended to

16We discuss this further in Section 5.
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several healers and then, led by price-comparison, end up with a low quality healer.

Figure 2: Expected healers’ aggregate surplus θn for E[αi] = 1
2

Figure 2 depicts the sum of the n healers’ expected payoffs θn. θn is maximized with

one or two healers where it equals 1/2. Afterwards θn decreases quickly.

Figure 3 depicts patients’ aggregate surplus which is the difference between overall

welfare γn and healers’ surplus θn. The healers’ surplus θn decreases considerably

faster than the proportion of patients cured γn. Hence the patients’ surplus is largest

at an intermediate market size of n = 8. As n gets larger, the patients’ surplus

decreases, driven by the decreasing average quality received γn. Note that with one

or two healers the patients’ surplus is negative: In monopoly, the healer attracts all

patients to whom he is recommended. He then charges a price of 1 for a treatment

of expected quality α = 1
2
. In duopoly, patients are more often recommended to the

healer with the higher quality (who offers in expectation a healing probability of 2
3
).
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Figure 3: Expected patients’ aggregate surplus γn − θn for E[αi] = 1
2

Yet, as competition is weak, prices are still quite high. Patients’ surplus increases,

but remains negative.

5 Discussion

In this section we discuss several directions for extensions and show robustness of

our results.

5.1 Equilibrium Selection

Possibly the aspect of our analysis that has the strongest need for discussion is our

focus on the monotone strategy equilibrium in the pricing stage. From Proposition 3
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it is clear that for the healers’ expected payoffs it does not matter which equilibrium

is played. The patients’ health, however, varies across equilibria. In the following we

give an informal discussion of how our analysis would change in three related models:

We consider a model where patients receive several anecdotes, a model where some

patients are informed about healers’ qualities and a model where patients are rational

and hold incomplete information. We will see that the first two models support the

focus on the monotone strategy equilibrium. The third model gives support to the

equilibrium in which healers mix with the same pricing strategy regardless of their

quality.

5.1.1 Patients Receiving Several Anecdotes

A natural generalization of our model would be to assume that patients gather

several anecdotes on each healer. While the equilibria of such generalized models

usually preclude an explicit solution and would typically require additional assump-

tions to ensure existence of equilibrium, it is mostly straightforward to see that the

main arguments of our analysis carry over: As long as each healer has a certain

chance of being perceived as the very best healer by some patients, healers will be

unwilling to engage in harsh price competition.

Assume for concreteness that each patient gathers k anecdotes about each of the

healers. If a patient receives l ≤ k positive reports about a healer he expects to

receive a utility of l
k

from attending him. This is the so-called S(k)-reasoning.17 As

has been pointed out by Spiegler (2003) this generalized model typically does not

possess an equilibrium: Healers face a strong discontinuity in their payoffs at the

prices l
k
.18 Spiegler shows that this existence problem can be solved by assuming

17Compare Osborne and Rubinstein (1998).
18Spiegler (2003) considers qualities which are known among healers but this does not make a

difference with respect to this discontinuity.
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that each patient has a willingness to pay v which is a continuously distributed

random variable.

We want to demonstrate heuristically why we expect the monotone strategy equi-

librium to be the unique price equilibrium in the S(k)-case. Assume for simplicity

that k = 2 and fix the strategies of healers j 6= i. Healer i’s price-setting problem

can then be written as the problem of maximizing

πi(p) = α2
iπi,2(p) + 2αi(1− αi)πi,1(p)

where πi,l(p) denotes healer i’s expected payoff from patients who have received l

positive reports on him (given the remaining healers’ strategies).

We want to show that in this case we cannot expect the existence of a mixed equi-

librium: Assume a mixed equilibrium existed. Then for each value of αi we would

need that

π′i(p) = α2
iπ
′
i,2(p) + 2αi(1− αi)π′i,1(p) = 0.

for all p. We cannot expect each summand to be zero separately: The contribution

from πi,1(p), i.e. from patients who have a rather mixed opinion about healer i,

can be sizable for small prices but for high prices it should be low. Conversely,

patients with a high opinion still contribute to healer i’s payoff at higher prices.

Thus π′i(p) = 0 can only be ensured if the two contributions cancel out each other.

The first order condition is equivalent to

π′i,1(p)

π′i,2(p)
= −2(1− αi)

αi

where the right hand side is increasing in αi. This can only be fulfilled for one value of

αi at a fixed p. Hence equilibrium should be pure. Moreover, since the contribution
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from high valuation patients is most significant for high quality healers, we expect

an equilibrium in strictly increasing price strategies. Clearly, this reasoning does

not depend on k = 2 and thus we expect our welfare results to hold for k > 2 as

well. This is especially surprising since an S(k)-patient with a large k is in a sense

not much different from a rational and completely-informed patient.

Finally, note that a higher k does not necessarily imply a better model of patients’

actual behavior. With one anecdote per healer, patients face a clear dichotomy:

Healers get subdivided into good and bad. This simplicity has been pointed out by

Fagerlin et al. (2005) as one of the factors that make anecdotes so attractive to rely

on, especially for patients in the health care market.

5.1.2 Well-Informed Patients

Next we consider a model where a fraction of “well-informed” patients perfectly sees

the qualities αi of n healers while the remaining patients use S(k)-reasoning. To give

a foundation to such a model, one could assume that there are very many healers

and that the well-informed patients decide between those n healers whose qualities

they know.19 Healers might also know all qualities but they do not know to which

subset of opponents they are compared by a patient. Thus they treat opponents’

qualities as independent draws from a common prior.

Consider first the situation where all patients are well-informed. Then the healers

essentially play a standard incomplete information first-price auction in which they

offer a surplus of αi − pi to the patients.20 Under some technical assumptions on F

it can be ensured that healer i’s equilibrium price pi is increasing in αi. Thus we

19Compare also Section 5.2.
20See e.g. Krishna (2002). Clearly, bidding in an incomplete information first-price auction does

not change when the “seller” (the patients) can observe the “bidders’ ” (the healers’) “valuations”
(qualities) as is the case here.
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obtain a monotone strategy equilibrium. Consequently, we expect to still obtain a

monotone strategy equilibrium if we combine well-informed and boundedly rational

patients. Thus while well-informed patients in the market may exert a positive

externality on S(k)-patients by lowering prices, they cannot keep them away from

bad healers.

5.1.3 Incompletely-Informed patients

As a third variant of our model, consider patients who (just like the healers) believe

that healers’ qualities are independent draws from a common prior F . Patients

receive anecdotes about healers and apply Bayesian reasoning to update their beliefs.

Accordingly, if healer i has quality αi, a fraction αi of patients believes he has

quality αh while the remaining patients believe he has quality αl for suitable values

0 < αl < αh < 1. Note that – provided that prices do not contain any information

about qualities – this is essentially a rescaled version of the S(2)-model of Section

5.1.1. Clearly, in this model, no separating equilibrium can exist: For example,

under a monotone price strategy, patients would in equilibrium infer qualities from

prices. Yet then a healer would want to deviate to higher prices.

To get an impression of the welfare implications of such a model, let us calculate the

expected welfare γ̃n for the case where all healers apply the same pricing strategy and

where patients always attend a recommended healer. Clearly, this is an upper bound

on the welfare achievable in a pooling equilibrium.21 As n increases, γ̃n converges

quickly to some value strictly above E[αi] = α. The intuition is as follows: If

all healers play the same price strategy, they all face the same probability that

they are the cheapest and thus get attended by the patients - given that they are

21Note that γ̃n is also the welfare achieved in the S(1) equilibrium of Proposition 2 where (for
Fi = F ) all healers play the same mixed strategy H (independent of their quality realization).
Furthermore, note that γ̃n also describes the proportion of patients cured in a situation where
patients apply anecdotal reasoning but where a fixed price is exogenously prescribed to the healers.
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recommended. But since better healers are recommended more often a patient

can expect an above average treatment when there are sufficiently many healers in

the market. The following remark (proved in the Appendix) provides an explicit

expression for γ̃n:

Remark 1 If patients randomly attend one of the recommended healers, welfare is

given by

γ̃n =
E[α2]

E[α]
(1− (1− E[α])n) (6)

where α has distribution F .

By Jensen’s inequality the limit for n to infinity, E[α2]/E[α], is strictly greater than

E[α] = α (unless F is deterministic). The second factor in (6), 1 − (1 − E[α])n, is

the probability that a patient gets at least one recommendation and turns to the

market for healers. The first factor of (6), E[α2]
E[α]

, is the expected quality a patient

receives given he does not stay at home. This factor does not depend on the number

of healers n as prices do not reveal anything about healers’ qualities. Yet it depends

on the variance of F :

E[α2]

E[α]
=
V ar[α]

E[α]
+ E[α].

A higher variance is beneficial as it increases the average quality of a recommended

set of healers.

While some basic level of competitions helps to increase welfare substantially, we see

that also in this model, stronger competition does not lead to any further significant

welfare improvements: γ̃n converges exponentially fast to a value which is bounded

away from 1 even though more and better healers enter the market.

We thus see that the predictions of the incomplete information model stand in

marked contrast to those from the S(k)-models. While this can be seen as casting
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doubt on the validity of the S(k)-approach, it should not be overlooked that the

opposite implication also holds: As we summarized in the introduction, the recent

literature on how patients argue about different therapies shows strong evidence

in favor of anecdotal reasoning. There is furthermore little reason to expect that

such anecdotal thinking is just a peculiarity of consumers in the health care market.

In Section 5.4 we present some survey-data in support of S(1) reasoning: Partici-

pants got very influenced by the recommendations when choosing among services

of markedly different price, even though they were told these recommendations had

(almost) no predictive value.

Since our model leads to considerably different welfare implications than a standard

incomplete-information model, it seems problematic to rely only on the latter type of

model e.g. for policy recommendations. While trying to connect the two approaches

is a challenging field for future research, we believe that our model presents a very

interesting (second) benchmark case. See also the discussion in Spiegler (2010).

5.2 Awareness of Patients

Throughout the analysis, we assumed that n is the number of healers in the market.

Yet as we outlined before22, we can reinterpret n as the number of healers a patient

samples, hence as a measure of patients’ awareness. Especially in a large market,

patients might only sample a fraction of all healers − and sampling intensity may

be heterogeneous among the patients. We can incorporate this heterogeneity into

our model by taking n as an integer-valued random variable. Our results prove to

be robust to this extension: For simplicity, focus on the symmetric case Fi = F . Let

us define

ρ = E[(1− α)n−1],

22Compare also Spiegler (2006a).
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where the expectation is taken over n. With the same argument as in Section 3,

healer i’s expected equilibrium payoff is then given by

πi = αiρ.

There exists again a symmetric mixed strategy equilibrium H which does not depend

on the realizations of the αi. The support of H is the interval [ρ, 1] and H is given

implicitly as the solution of

ρ = pE[(1− αH(p))n−1].

From this mixed strategy equilibrium it is straightforward to construct a monotone

strategy equilibrium the same way as for deterministic n. Hence again, too much

competition turns out to be detrimental to welfare.23

5.3 Endogenous Qualities

One assumption of our model which may seem rather strong is that the healers’

qualities are exogenous random variables. It is plausible that while healers may not

be able to fully control their qualities, they can influence them at least to some

extent. With the application to advertising in mind, Ireland (1993) and McAfee

(1994) analyze extended games where the healers choose their qualities themselves

before pricing takes place. They focus on the case of complete information about

qualities. Szech (2010) adds the welfare analysis under the S(1) interpretation.24

23As an aside, from applying Jensen’s inequality we see that ρ > (1 − α)E[n]. The healers’
equilibrium payoff is thus higher than in the model with a deterministic number of E[n] healers.
In this sense, the heterogeneity in n is beneficial for the healers.

24Welfare results differ markedly from welfare in the advertising interpretation. Under the
interpretation of advertising, firms differ only in advertising activities, but not in service qualities.
αi describes solely the probability with which a consumer gets aware of firm i. Hence any consumer
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It is straightforward to combine the analysis of endogenous qualities for the complete

information case with our incomplete information model: Recall that ex ante, a

healer’s expected payoff only depends on his expected quality (and not on any

further properties of the distribution function). Thus the analysis of the complete

information case transfers immediately to a model where healers choose between

several distributions from which their quality is drawn (in the sense of, e.g., choosing

between different specializations): When choosing between different distribution

functions, healers only take into account the expected quality.

From the analysis of the complete information case it is known that healers typically

choose much lower than socially optimal qualities, to make competition softer and

hence raise revenues.25 Also, if the best possible qualities are not too low, there will

be much difference in the qualities offered by the best and the worst healers. Hence

endogenous quality choice creates the situations of varying qualities to which our

bad welfare results apply.

5.4 Survey Evidence of S(1) Behavior

To gather some preliminary empirical evidence in favor of our S(1) assumption, we

conducted a short survey in a lab experiment asking 93 subjects26 which service-

provider they would choose among six different options in the following hypothetical

setting: The service was a professional prophylactic tooth cleaning. Subjects were

informed about the prices of the different providers (dentists). Additionally, they

had information from a newly opened up internet platform providing exactly one

ending up at a firm receives the same gross utility.
25See Ireland (1993) and McAfee (1994) for the explicit form of the pure quality-setting equilibria,

respectively, with and without costs of quality-setting. Szech (2010) adds a more detailed analysis
of mixed strategy equilibria and shows that welfare decreases for larger numbers of healers under
the interpretation of anecdotal reasoning.

26Subjects aged between 19 and 44 and also participated in an unrelated other experiment when
invited to the lab. They mostly consisted of students at the University of Bonn.

27



Table 1: Choice of Services
Dentist Thumbs Price # Subjects

A Down 120 0
B Up 80 51
C Down 100 0
D Up 120 0
E Down 60 5
F Up 100 15
G Down 80 0

rating (thumbs up or thumbs down) from respectively one former patient on each

provider. Clearly, such a signal carries basically no or very little information, as

was also pointed out by many subjects in an answer sheet (where subjects could

explain their choice of provider). Service prices ranged from 60 to 120 Euro, where

the cheapest provider was without recommendation as seen in Table 1.27

We find that 74% of subjects choose Provider B and thus among the recommended

providers the provider with the lowest price. We take this as a hint that indeed S(1)

reasoning seems to capture a way people make selections in markets of little quality

information. The second option that was chosen by a sizable group of patients was

the second-cheapest recommended option while only few chose the cheapest one.28

6 Conclusion

“It is unwise to pay too much, but it’s worse to pay too little. When you pay too

little, you sometimes lose everything because the thing you bought was incapable

of doing the thing you bought it to do.” This recommendation is attributed to the

social thinker John Ruskin (1819-1900). Indeed, in markets where qualities are not

easy to grasp, competition among firms may lead to consumers ending up with poor

27To control for order effects, part of the subjects received the options in a different order, see
Appendix B.

28A translation of the German instructions and more details are found in Appendix B.
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qualities, as they focus too much on price differences. Our model shows that even if

patients try to get an idea about the qualities in a market, they likely end up with

a bad quality.

The assumption that consumers rely on word of mouth captures empirical findings

from the psychological and economic literature. Recently, also medical research

puts a lot of attention to the phenomenon that lay people tend to prefer to rely

on anecdotes even if statistical evidence is available and presented in an appealing,

easy-to-grasp way. This fact has even led to recommendations of incorporating

personal stories into evidence-based results, such that patients may be more willing

to adhere to statistical recommendations.29

Assuming that consumers apply anecdotal reasoning, our model generates very dif-

ferent predictions than those made by standard market models. Stronger competi-

tion turns out to be detrimental to welfare. Recent surprising results from the US

medical system support this conclusion, showing that the non-competing Veterans

Health Administration often provides higher quality services than the competitive

health systems prevalent in the US.

Generally, we believe that more research is needed to explore the interplay between

perfectly rational firms and boundedly rational consumers following behavioral, pos-

sibly market-specific rules instead of perfectly rational thinking.

29Compare e.g. Glenton et al. (2006).
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A Proofs

Proof of Proposition 1

In McAfee (1994) it is shown that the vector of strategies in Proposition 1 is indeed

an equilibrium. McAfee (1994) also shows payoff uniqueness, i.e., for all i, healer i’s

equilibrium payoff is given by

πi = αiC where C :=
n−1∏
j=1

(1− αi) > 0. (7)

Observe that the first equality states that all healers’ expected equilibrium payoffs

conditional on being recommended must be identical.

We hence take these results as given and show how to obtain equilibrium uniqueness

from this point on. We start with a number of preliminary observations:

• In any equilibrium healers do not place atoms on prices except for possible

atoms on 0 or 1: If healer i sets an atom in p ∈ (0, 1), other healers play-

ing prices right above p would want to shift their probability mass to prices

marginally below p in order to substantially increase their winning probability

(while only marginally decreasing prices). If no other healer played prices right

above p, healer i could profitably shift the atom upwards.

• In addition, at most one healer sets an atom on 1 in equilibrium: If two or

more healers played an atom in 1, this would result in a positive probability

of ties. Thus at least one healer could profitably deviate by shifting his atom

marginally downwards.

• The union of the healers’ strategy supports must go up to 1: Playing higher

prices is dominated. If the union of supports went only up to a lower price

pH < 1, any healer mixing up to pH could profitably deviate to playing 1.
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• Due to the positive equilibrium payoffs, the union of strategy supports must

be bounded away from 0. Denote by pL > 0 the infimum of the union of

equilibrium supports.

• The union of supports must be an interval [pL, 1], i.e. there cannot be any

gaps in the union of supports: If there was an interval [p, p] ⊂ [pL, 1] where no

healer was active, a healer who would be playing prices right below p could

deviate by shifting probability mass from a small interval below p to p, yielding

a substantially better price at a marginally lower probability of winning.

• Furthermore, there cannot be a subset [p, p] ⊂ [pL, 1] where only one healer is

active: Such a healer could profitably deviate by concentrating all probability

mass of the interval in an atom at p. He would then receive a higher price at

the same probability of winning.

Armed with these insights we turn to the first major step of the proof:

1) In any equilibrium, the strategy support of each healer must go down to the same

pL > 0. Furthermore, in any equilibrium, pL = C.

Proof of 1): Consider two healers i and j with supports Si and Sj. Assume piL < pjL

where pkL = inf Sk for k = i, j. Then, with positive probability, healer i plays a price

from [piL, p
j
L]. Healer j’s payoff from playing pjL must equal his equilibrium payoff

αjC > 0. Yet this implies that healer i can earn more than his equilibrium payoff

of αiC by playing pjL: Since - unlike healer j - healer i does not compete against

healer i (himself) as a possibly cheaper competitor when playing pjL, his expected

payoff conditional on being recommended must be higher than that of j. This is a

contradiction to (7). Hence the support of every healer must go down to the same

lowest price pL.
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To see that pL = C, note that for all j, healer j’s payoff from playing pL must

be αjpL: The other healers charge higher prices with probability 1. Thus healer

j attracts all the patients to whom he is recommended and receives pL from all of

them. This leads to a payoff of αjpL, which is only consistent with (7) if pL = C.

The next step further characterizes the functional form of the healers’ equilibrium

distribution functions:

2) Let D ⊂ {1, . . . , n} denote the set of healers who are active on some interval

I = (p, p) in some arbitrary but fixed equilibrium. Assume all healers j ∈ D are

active at any p ∈ I and let m = #D. (Note that from our preliminary observations

it follows that m 6= 1.) Then for all j ∈ D any equilibrium distribution function

Hj(p) must satisfy for all p ∈ I

Hj(p) =
1

αj

(
1− m−1

√
L

p

)
(8)

where the constant L > 0 is independent of p and j. Moreover,

L =
C∏

i∈DC (1− αiHi(p))
.

Proof of 2): Note that for all j ∈ D and all p ∈ I the expected payoff of healer j

from playing p must equal the equilibrium payoff of αjC. Using (2) and the fact that

distribution functions of inactive healers are constant over I, this condition reads

αjC = pαj

[∏
i∈DC

(1− αiHi(p))

] ∏
k∈D\{j}

(1− αkHk(p))

 .
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Rearranging and using the definition of L yields for all p ∈ I and j ∈ D

∏
k∈D\{j}

(1− αkHk(p)) =
L

p
. (9)

Now consider (9) for two different healers i, j ∈ D. Taking the quotient of (9) for i

and (9) for j yields that for all p ∈ I

1 =
1− αjHj(p)

1− αiHi(p)

which implies that there is a function h(p) such that h(p) = αkHk(p) for all k ∈ D.

Substituting h(p) for αkHk(p) on the left hand side of (9) and then solving for h

yields

h(p) = 1− m−1

√
L

p

and thus

Hj(p) =
1

αj

(
1− m−1

√
L

p

)
as required.

The last main step shows that no healer has a gap inside his equilibrium price

interval, i.e. no healer is inactive over some range of prices (above pL) while putting

positive probability mass on prices above that range:

3) For all j the support of healer j’s strategy is of the form [pL, p
j
H ] for some pL <

pjH ≤ 1.

Proof of 3): Assume that some price p > pL is in the support of the strategy of

healer j but j is inactive on some interval directly below p. Choose p < p such that

for all p ∈ I = (p, p) the set of healers who are active at p is identical. (This is

possible since there are no atoms and thus the Hi are continuous.) Denote the set
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of healers active on I by D. Using (2) as in Step 2) we can write the payoff of healer

j from playing some p ∈ I ∪ {p} as

πj(p) = αjp

 ∏
i∈DC\{j}

(1− αiHi(p))

[∏
k∈D

(1− αkHk(p))

]
.

Defining the constant factor from the other inactive healers as

K :=

 ∏
i∈DC\{j}

(1− αiHi(p))


and making use of (8) from the last step, we can express πj(p) as

πj(p) = αjpK

(
m−1

√
L

p

)m

= αjKL
m

m−1 m−1

√
1

p

where the constant L is defined as in Step 2. Note that this implies that πj(p) is

strictly decreasing in p over I ∪{p}. By assumption, healer j is active at p and thus

must earn his equilibrium payoff there:

πj(p) = αjC.

Yet since πj(p) is decreasing, this implies that for p ∈ I

πj(p) > αjC

such that healer j can profitably deviate - which is a contradiction.

To conclude the proof, we still have to show that the vector of strategies defined

in the proposition is actually the only candidate for an equilibrium. We have seen

that all supports start at pL = C and since healers do not set atoms or leave gaps in
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their supports, all healers remain active up to the price p1 where the first healer(s)

j have used up their probability mass, i.e. where Hj(p1) = 1. Note that on any

interval [pL, p] where all healers are active, all distribution functions are uniquely

determined by Step 2. Likewise, p1 and the set of healers with Hj(p1) = 1 are

uniquely pinned down by this. Above p1, all healers who still have probability mass

to spend must remain active. By Step 2, distribution functions above p1 are again

uniquely determined, pinning down in turn the price p2 > p1 where the next supports

end. Continuing this procedure sequentially until p = 1 or until all or all but one

distribution functions equal 1 determines a unique candidate for an equilibrium. It

is easy to calculate that this unique candidate is actually the vector of strategies

stated in the proposition, and that this unique candidate is indeed an equilibrium.

�

Proof of Proposition 2

The payoff of healer i from playing p while the other healers play Hj is given by

πi(p) = pαiE

[∏
j 6=i

(1− αjHj(p))

]
= pαi

∏
j 6=i

(1− αjHj(p)) (10)

by the independence of the αj. This differs from (2) only by a factor of αi/αi

which is independent from p. Thus Hi(p) must be a best response for healer i

in the incomplete information game with qualities α1, ..., αn as well. (Otherwise

the Hi would not form a Nash equilibrium in the complete information game with

α1, ..., αn.) �

Proof of Proposition 3

“⇐” follows almost immediately: If a strategy profile satisfies (3), the expected

payoff of healer i from playing p while the other healers play G
αj

j is the same as in
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the equilibrium studied in Proposition 2:30

πi(p) = pαi
∏
j 6=i

(1− E[αjG
αj

j (p)]) = pαi
∏
j 6=i

(1− αjHj(p)). (11)

Hence it does not make any difference for healer i whether his competitors play Hj

or G
αj

j . Healer i then does not have an incentive to deviate from Gαi
i because this

strategy has support in [p0, pi], the support of Hi. Thus all healers playing Gαi
i is

an equilibrium.

For “⇒”, we first verify that if the G
αj

j are equilibrium strategies, we do not have

to worry about atoms. This is needed to justify the expression (12) for the expected

payoffs below. Note first that it is inconsistent with equilibrium behavior for a

healer j to play a price p̃ < 1 with positive probability in expectation over αj:
31 If

other healers had probability mass on prices marginally above p̃, they would shift

this mass downwards. If no other healers had probability mass on prices marginally

above p̃, healer j could earn more by shifting his probability mass from p̃ upwards.

Additionally, at most one healer j plays a price of 1 with positive probability in

expectation over αj: If several healers did so, at least one of them would have an

incentive to shift probability mass downwards to escape tie-breaking.

Since there are no atoms (except possibly one in 1) we can write the payoff of healer

i from playing p while the other healers play G
αj

j as

πi(p) = pαi
∏
j 6=i

(1− E[αjG
αj

j (p)]). (12)

30Note that (3) implies that for all p < 1 in expectation over αj the probability that healer j
plays p is zero. We thus do not have to worry about atoms.

31Note that we do not rule out in the following that for fixed αj the distribution function G
αj

j

contains atoms. We only show that there are no atoms the other healers can anticipate, i.e., atoms
in E[Gαj

j ].
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Define for each healer i a distribution function

H̃i(p) =
1

αi
E [αiG

αi
i (p)] .

It must hold that H̃i(p) = Hi(p): Clearly, with a similar reasoning as before, if all

healers playing Gαi
i is an equilibrium, all healers playing H̃i(p) must be an equilib-

rium as well, as the expected payoffs from playing any price p are identical in both

situations:

pαi
∏
j 6=i

(1− αjH̃j(p)) = pαi
∏
j 6=i

(1− E[αjG
αj

j (p)]). (13)

Note that H̃i(p) does not depend on healer i’s private information. From comparing

the left hand side of (13) with (2) we see that all healers playing H̃i(p) is also an

equilibrium of the complete information game with qualities α1, ..., αn since payoffs

differ only by a constant factor between the two games. From Proposition 1 we know

that (H1, . . . , Hn) is the unique equilibrium of the complete information game. This

yields H̃i = Hi which by the definition of H̃i implies (3).

Finally, we have to show that the support of Gαi
i lies in [p0, pi] for all values of αi.

32

Note that it does not make any difference for healer i whether his competitors play

(G
αj

j )αj
or Hj. But playing prices outside [p0, pi] against competitors who play Hj

is strictly dominated. (This is an easy calculation similar to Step 2 in the proof

of Proposition 1). Thus, if Gαi
i is a best response to (G

αj

j )αj
, its support must be

included in [p0, pi].

That healers’ expected payoffs are the same in all equilibria is a direct consequence

of our result that (3) must hold in all equilibria. �

32Note that (3) implies already that this holds for Fi-almost all values of αi.
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Proof of Proposition 4

We first start with a definition: Define the function Ki(αi) as

Ki(αi) =

∫ αi

0

βfi(β)dβ.

Note that Ki is strictly increasing since the integrand is positive for αi > 0. Fur-

thermore, Ki(0) = 0 and Ki(1) = αi.

Among others, we have to show that there exists a family (Gαi
i )αi

which satisfies the

sufficient conditions for a Nash equilibrium from Proposition 3 and which consists

only of distributions Gαi
i (p) that put all mass on one price. For this purpose, note

that a price setting function P̄i(αi) translates into a family of distribution functions

via

Gαi
i (p) = 1{p≥P̄i(αi)}.

Thus, for a price setting function, (3) becomes

∫ 1

0

αi1{p≥P̄i(αi)}f(αi)dαi = αiHi(p). (14)

Now, to prove the proposition, we have to show that there exists a unique equilibrium

in strictly increasing price setting functions. Define a strictly increasing price setting

function via

P̄i(αi) = H−1
i

(
Ki(αi)

αi

)
.

H−1
i denotes the inverse of the restriction of Hi to [p0, pi]. Thus H−1

i is a bijection

from [0, 1] to [p0, pi]. To see that P̄i is a well-defined bijection from [0, 1] to [p0, pi]

note also that Ki(αi)/αi is a bijection from [0, 1] to [0, 1]. That P̄i is strictly increas-

ing follows because Ki and Hi are strictly increasing. Considering the inverse of P̄i,
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we see that P̄i satisfies (3):

P̄−1
i (p) = K−1

i (αiHi(p))

⇔ Ki(P̄
−1
i (p)) = αiHi(p)

⇔
∫ P̄−1

i (p)

0

αifi(αi)dαi = αiHi(p). (15)

As P̄i is strictly increasing, the final equality is equivalent to (14) and thus to (3).

Since P̄i only takes values in [p0, pi], we have hence shown (making use of Proposition

3) that the functions P̄i form a Nash equilibrium. Furthermore, from (15) it is

evident that P̄i(αi) is the unique monotonically increasing equilibrium price setting

function. �

Proof of Proposition 5

This proposition is an immediate corollary of results derived in Section 3 applied to

the symmetric case Fi = F . In Proposition 3 we show that the healers’ expected

payoffs are identical in all equilibria. In Proposition 2 we prove that there is an

equilibrium where the expected payoff of healer i is given by

πi = αi(1− α)n−1.

Proposition 4 shows that there is a unique monotonically increasing strategy equi-

librium, given by the price setting function

P̄ (αi) = H−1

(∫ αi

0
βf(β)dβ

α

)

where H is defined in Proposition 1 as

H(p) =
1

α

(
1− 1− α

n−1
√
p

)
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with support [(1− α)n−1, 1]. To verify that this is the price setting function stated

in Proposition 5 we just have to calculate that

H−1(k) =

(
1− α
1− αk

)n−1

.

Inserting k =
∫ α

0
βf(β)dβ/α yields the desired result. �

Proof of Proposition 6

Denote by αi:n the ith lowest of the values α1,...,αn. In the following, we make use

of three well-known facts:

First, the density of αi:n is given by33

fi:n(α) = n

(
n− 1

i− 1

)
F (α)i−1(1− F (α))n−if(α).

Second, recall the Binomial Theorem: For all a, b > 0 and m ∈ N

m∑
i=0

(
m

i

)
aibm−i = (a+ b)m. (16)

Finally, we make use of the fact that

E[1− α̃|α̃ < α] =

∫ α

0

(1− β)
f(β)

F (α)
dβ = 1− 1

F (α)

∫ α

0

βf(β)dβ. (17)

We now calculate γn in order to verify (5). Recall that each patient consults the

worst healer who is recommended to him. Hence the probability that a patient

consults healer i equals the probability that i is recommended and that all healers

worse than i are not recommended. Thus

γn = E

[
n∑
i=1

α2
i:n

i−1∏
j=1

(1− αj:n)

]
.

33Compare for instance David (1970).
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Note that this calculation takes into account that if no healer is recommended, the

patient receives a quality of zero. Observe that conditional on αi:n taking some

value α,
∏i−1

j=1(1−αj:n) has the same distribution as a product of i− 1 independent

random variables:

γn =

∫ 1

0

n∑
i=1

α2E

[
i−1∏
j=1

(1− α̃j)

∣∣∣∣∣ α̃1, . . . , α̃i−1 < α

]
fi:n(α)dα

=

∫ 1

0

n∑
i=1

α2E[1− α̃|α̃ < α]i−1fi:n(α)dα (18)

where the α̃j and α̃ are independent and distributed according to F . Plugging the

definition of fi:n into (18) and rearranging yields

γn = n

∫ 1

0

α2

[
n∑
i=1

(
n− 1

i− 1

)
(F (α)E[1− α̃|α̃ < α])i−1 (1− F (α))n−i

]
f(α)dα.

After shifting the summation index and inserting (17), this becomes

γn = n

∫ 1

0

α2

[
n−1∑
i=0

(
n− 1

i

)(
F (α)−

∫ α

0

βf(β)dβ

)i
(1− F (α))(n−1)−i

]
f(α)dα.

Applying (16), we obtain

γn = n

∫ 1

0

α2

[
1−

∫ α

0

βf(β)dβ

]n−1

f(α)dα

as we wanted to show.

We still have to prove that

lim
n→∞

γn = 0.

Consider the random variable Γn which is the quality of the treatment one fixed

patient receives in equilibrium. Note that there are two levels of randomness in Γn,
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the randomness in the αi and the randomness in the recommendations the patient

gets. Clearly

E[Γn] = γn.

We first show that Γn converges to zero in probability, i.e., for every δ > 0

lim
n→∞

Prob (Γn < δ) = 1.

Fix δ > 0. The idea is that for any k we can choose n large enough such that

with high probability at least k healers have qualities in ( δ
2
, δ). Each of these is

recommended with a probability larger than δ
2
. Hence if k is large enough it is very

likely that one of them is recommended. Precisely, we have to show that for every

ε > 0 there is some n(ε) such that

Prob (Γn < δ) ≥ 1− ε

for all n > n(ε). Denote by the random variable Dn
δ the number of healers whose

qualities lie in the interval ( δ
2
, δ). Denote by Rn

δ the number of healers with qualities

in the interval ( δ
2
, δ) who are recommended.

For any k ≤ n

Prob (Γn < δ) ≥ Prob (Rn
δ ≥ 1)

≥ Prob (Dn
δ ≥ k) Prob (Rn

δ ≥ 1 |Dn
δ ≥ k)

≥ Prob (Dn
δ ≥ k)

(
1− (1− δ

2
)k
)
. (19)

Choose k(ε) large enough such that

(
1− (1− δ

2
)k(ε)

)
>
√

1− ε.
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Then choose n(ε) (= ñ(ε, k(ε))) large enough such that

Prob
(
D
n(ε)
δ ≥ k(ε)

)
>
√

1− ε.

This is possible because we have assumed f > 0 which implies that, independently,

each healer has with positive probability a quality in ( δ
2
, δ). Then by (19)

Prob (Γn < δ) >
√

1− ε2 = 1− ε

for all n > n(ε). Thus we have shown that Γn converges to zero in probability. Since

Γn is bounded, this implies that Γn converges to zero in mean (see, for instance,

Grimmett and Stirzaker (1992)):

lim
n→∞

γn = lim
n→∞

E[Γn] = 0.

�

Proof of Remark 1

Let
∑

A denote
∑

A⊂{1,...,n}, A 6=∅ and let #A denote the number of healers in A.

Since price setting does not depend on the realizations of the αi, all recommended

healers have the same chance of offering the lowest price. Thus the expected quality

a patient receives is the expectation of the average quality of the recommended

healers:

γ̃n = E

[∑
A

∑
i∈A αi

#A
Prob[A is the set of recommended healers]

]
.
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Obviously it holds that

Prob[A is the set of recommended healers] =
∏
j∈A

αj
∏
k∈Ac

(1− αk).

Hence

γ̃n = E

∑
A

1

#A

∑
i∈A

α2
i

∏
j∈A\{i}

αj
∏
k∈Ac

(1− αk)

 .
By the independence of the αi, this implies

γ̃n =
∑
A

E[α2]E[α]#A−1(1− E[α])n−#A

where α is a random variable with distribution F . Since {1, . . . , n} has
(
n
k

)
subsets

with k elements we can rewrite this to

γ̃n =
E[α2]

E[α]

n∑
k=1

(
n

k

)
E[α]k(1− E[α])n−k.

By the binomial theorem (16) this is the same as

γ̃n =
E[α2]

E[α]
(1− (1− E[α])n).

Hence we are done. �

B Survey Questionnaire

Instructions for subjects consisted of the content of Table 1 preceded by the following

text:34

Please imagine the following hypothetical situation:

34translated from German
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Assume you want to attend a dentist for professional prophylactic tooth cleaning.

In your city, the dentists listed in the following table are all equally easy to reach

for you. On a quite new internet portal, you find for each of the dentists exactly

one rating by one former patient of the tooth cleaning offered. This rating is either

positive (“thumbs up”) or negative (“thumbs down”).

In the table on the following page you find for each dentist this rating as well as the

price of the tooth cleaning. Please mark the dentist who you would prefer to attend

for the tooth cleaning! Please mark only one dentist!

The table was followed by the following control question: How did you decide for

the dentist you chose? Please give a short explanation:

To control for order effects, 46 of the 93 subjects received the treatments of Table

1 in the order “GFADEBC” relabelled “ABCDEFG”. This had little effect on the

proportion of subjects choosing the cheapest recommended option: In the original

order, respectively, 32, 11 and 4 subjects chose options B, F and E. After reordering,

37, 5 and 4 subjects chose the corresponding options.
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