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We revisit the two bidder complete information all-pay auction with bid-caps introduced 
by Che and Gale (1998), dropping their assumption that tie-breaking must be symmetric. 
Any choice of tie-breaking rule leads to a different set of Nash equilibria. Compared to the 
optimal bid-cap of Che and Gale we obtain that in order to maximize the sum of bids, 
the designer prefers to set a less restrictive bid-cap combined with a tie-breaking rule 
which slightly favors the weaker bidder. Moreover, the designer is better off breaking ties 
deterministically in favor of the weak bidder than symmetrically.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

At the Olympic Games of 1896, the first Olympic Games of the Modern Era, two weightlifters impressed the Athenian 
audience particularly: the Scotsman Launceston Elliot and the Dane Viggo Jensen. Both lifted the same highest weight. 
The jury decided to solve the tie in favor of Jensen for he was considered to have the better style. Unfamiliar with this 
tie-breaking rule, the British delegates protested against the decision. This finally led to Elliot and Jensen obtaining the 
permission to try again for lifting higher weights. Yet both failed. In the end, Jensen was declared the champion.

Nowadays, it is neither style nor the energy of the own country’s delegates that helps to win a tie in a weightlifting-
contest. Instead, when a tie occurs, it is resolved in favor of the lighter athlete. Behind this is the idea that a lighter athlete, 
though in the same weight-class, probably has to exert more effort to lift the same weight than a heavier competitor.

Clearly, sports contests are more interesting if athletes display great efforts. For a designer, it is hence a natural objective 
to maximize the sum of efforts exerted by the contestants. Che and Gale (1998) show that handicaps can be an effective 
tool for raising aggregate effort levels in all-pay contests but they restrict their analysis to symmetric tie-breaking. We are 
going to allow the designer not only to set handicaps optimally, but also to choose the optimal tie-breaking rule.

In a complete-information all-pay auction without bid caps, the stronger bidder’s advantage arises from his ability to 
win with certainty. He can secure a positive payoff by bidding just above the weak bidder’s valuation. If a bid cap less 
than the weak bidder’s valuation is imposed, this advantage disappears. Moreover, the advantage can be reversed if the 
tie-breaking is sufficiently biased towards the weak bidder, since the weak bidder can then guarantee himself a positive 
payoff by bidding the cap. In fact, every choice of tie-breaking rule leads to a different set of Nash equilibria.

We provide a complete characterization of the rich equilibrium structure. By choosing an appropriate combination of 
tie-breaking rule and bid-cap, the designer can enforce pure equilibria as well as mixed equilibria in which either of the 
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bidders earns zero payoff. Compared to Che and Gale’s optimal bid-cap under symmetric tie-breaking, we obtain that the 
designer optimally sets a less restrictive bid-cap combined with a tie-breaking rule which slightly favors the ex ante weaker 
bidder. Whereas the unique Nash equilibrium of the unrestricted all-pay auction is in mixed strategies, both of these policies 
force bidders to play a pure strategy equilibrium. Both bidders bid the bid-cap. The optimal policy exploits the fact that the 
weaker bidder is willing to bid more if tie-breaking is biased in his favor. If this bias is not too large this does not deter the 
stronger bidder from competing.

In many real-world settings, ties are broken either in favor of one bidder or 50 : 50. Therefore, we also consider the 
designer’s problem if he is restricted to choosing between symmetric and deterministic tie-breaking rules. Even under this 
restriction, the designer can do better than in the optimal policy of Che and Gale (1998). In the optimum, he sets a bid-cap 
which is just small enough to influence equilibrium behavior and always breaks ties in favor of the weak bidder. Superfi-
cially, this policy seems like a minimal intervention into the game but it has important consequences. In an unrestricted 
all-pay auction, there is a mixed equilibrium in which the weak bidder stays out with a positive probability. The designer’s 
policy gives rise to an equilibrium in which the weak bidder makes a preemptive bid (by bidding at the bid-cap) with the 
same probability with which he would stay out in the unrestricted auction.

Aggregate bids vary across policies as soon as asymmetries are present. Differences in aggregate bids increase as asym-
metries grow larger. In the limit, the policy of Che and Gale outperforms the standard unrestricted all-pay auction by a 
factor of two. Solving the tie in favor of the weak bidder combined with the optimal bid-cap leads to an increase by a 
factor of three. If a tie-breaking slightly in favor of the weak bidder is possible, the optimal policy outperforms the standard 
auction by a factor of four.

Related literature In the vast literature on all-pay auctions,1 tie-breaking rules have received comparatively little attention. 
Indeed, in many all-pay auction games, the set of Nash equilibria is invariant to the choice of tie-breaking rule. An example 
is a standard complete information all-pay auction in which at least two bidders have positive valuations for the object 
for sale.2 In other related games, the choice of tie-breaking rule is a necessity since a Nash equilibrium exists only for 
certain tie-breaking rules. Consider for instance a two-player complete information all-pay auctions in which bidders have 
valuations v1 > 0 and v2 = 0. Then a Nash equilibrium (in which both bidders bid zero) exists only if tie-breaking always 
favors bidder 1.

In contrast, in all-pay auctions with binding bid-caps the choice of tie-breaking rule is decisive since in equilibrium both 
bidders play the bid-cap with positive probability. Yet in the literature only the case of symmetric tie-breaking has been 
considered. This concerns both the complete information case studied by Che and Gale (1998), Persico and Sahuguet (2006)3

and Hart (2014),4 and the incomplete information case studied by Gavious et al. (2003) and Sahuguet (2006). See Che and 
Gale (1998) for a discussion of the relation to policies other than bid-caps such as minimum-bid requirements.

Outline The paper is structured as follows. Section 2 introduces the model. Section 3 characterizes the bidders’ equilibrium 
behavior for all combinations of bid-caps and tie-breaking rules. Section 4 analyzes the designer’s optimization problem. 
First we allow for arbitrary tie-breaking rules, then we focus on tie-breaking rules that are either deterministic or symmetric. 
Section 5 discusses some extensions and implications of our analysis. All proofs are in Appendix A.

2. The model

We consider a complete information all-pay auction with two bidders 1 and 2 with positive valuations v1 and v2
for winning. Throughout we assume v1 > v2. Each bidder is restricted to choose his bid b from the interval [0, m] at a 
cost of b. If a bidder submits the strictly highest bid, he wins. If both bidders submit the same bid, bidder 1 wins with 
probability α ∈ [0, 1], otherwise bidder 2 wins. We assume that before the auction takes place a designer chooses α and the 
handicap-level m in order to maximize the sum of bids. This is the setting of Che and Gale (1998) with the only difference 
that they restrict their analysis to symmetric tie-breaking.

If the designer does not impose a bid-cap, i.e. m = ∞, we are back to the standard complete information all-pay auction. 
In its unique equilibrium, both bidders mix uniformly over [0, v2).5 Moreover, bidder 2 bids 0 with probability 1 − v2

v1
. For 

m > v2, this set of strategies remains the unique equilibrium. The case m = 0 is trivial. Thus we assume in the following 
that the designer chooses (α, m) from the set

C = [0,1] × (0, v2].
We denote by CG the subset analyzed by Che and Gale (1998), CG =

{
1
2

}
× (0, v2].

1 See Konrad (2009) for an overview.
2 This has been shown, among others and in increasing generality, by Hillman and Samet (1987), Hillman and Riley (1989), Baye et al. (1996), and Siegel

(2009). A parallel result holds for the incomplete information case studied first by Weber (1985) and Hillman and Riley (1989).
3 Persico and Sahuguet (2006) embed the model of Che and Gale (1998) into a model of electoral competition in which parties try to attract heteroge-

neous voters. In their setting, the symmetric tie-breaking is implemented via the assumption that undecided voters toss a fair coin.
4 Hart (2014) departs from the symmetry in Che and Gale’s setting via analyzing asymmetric bid-caps under symmetric tie-breaking. This is similar to 

considering a tie-breaking always in favor of the less restricted bidder and implementing the more rigid cap for both bidders.
5 See, e.g., Hillman and Riley (1989).
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Fig. 1. Partition of the designer’s choice set C .

3. All equilibria

In this section, we analyze the bidding game for fixed (α, m) ∈ C . We characterize all Nash equilibria of this game. 
Five parameters suffice to specify each of these. We describe equilibrium strategies in terms of the associated cumulative 
distribution functions F1 and F2.

Proposition 1. Fix (α, m) ∈ C. If two distribution functions F1 and F2 form an equilibrium of the bidding game, then there exist 
numbers c1, d1, c2, d2 ∈ [0, 1] and b ∈ [0, m] such that

Fi(b) = ci 1{b≥0} + min(b,b)

v j
+ di 1{b≥m} (1)

for i, j ∈ {1, 2} and j �= i. Moreover, ci > 0 implies c j = 0.

Thus, equilibrium strategies are characterized by possible atoms of mass ci and di at 0 and at m and an interval [0,b]
over which bidders mix uniformly with density inversely proportional to their opponent’s valuation. At most one bidder 
places an atom at 0. The arguments which rule out atoms in the interior (0, m) of the bid-space are similar as in a standard 
all-pay auction. Yet, unlike in a standard all-pay auction, we cannot rule out simultaneous atoms at m since a profitable 
deviation by bidding slightly above m is not available. Proposition 1 leads to the following classification of possible types of 
equilibria.

Corollary 1. Fix (α, m) ∈ C.

(i) If there exists a pure equilibrium, it is given by both bidders bidding m.
(ii) In any equilibrium which is not pure, one bidder earns zero expected payoff.

(iii) If the pair of pure strategies in which both bidders bid m leads to strictly positive expected payoffs for both bidders, then this pair 
of strategies is the unique equilibrium of the game.

There can thus be pure equilibria in which both bidders bid m, and mixed equilibria in which at least one bidder earns 
a payoff of zero. In order to characterize the regions in C for which either is the case we need to define a decomposition of 
C into subsets. The decomposition is illustrated in Fig. 1.

Definition 1. Define critical levels of m by

m1(α) = min(αv1, (1 − α)v2) for α ∈ [0,1]
and

m2(α) = v2 − α2

1 − 2α
(v1 − v2) for α ∈ [

0,α∗]
where α∗ = v2/(v1 + v2) denotes the maximizer of m1. Furthermore, define

C I = {
(α,m) ∈ C

∣∣α ∈ [
0,α∗) and m2(α) > m > m1(α)

}
,
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as well as

CII = {
(α,m) ∈ C

∣∣α ∈ [
0,α∗) and v2 > m > m2(α)

} ∪ {
(α,m) ∈ C

∣∣α ∈ [
α∗,1

]
and v2 > m > m1(α)

}
,

and

CIII = {(α,m) ∈ C |m < m1(α) } .

Thus, m1(α) separates the set CIII from C I and CII , while m2(α) separates C I and CII . Denote by S the segment of C
separating C I and CII ,

S = {
(α,m) ∈ C

∣∣α ∈ (
0,α∗) and m = m2(α)

}
,

by T the segment of C separating C I and CII from CIII ,

T = {(α,m) ∈ C |α ∈ [0,1] and m = m1(α) } ,

and by U the upper boundary, U = [0, 1] × {v2}.

Thus, C = C I ∪ CII ∪ CIII ∪ S ∪ T ∪ U and all sets in this conjunction are disjoint. In our characterization of equilibria we 
proceed in two steps: Proposition 2 proves existence and uniqueness of equilibrium for (α, m) ∈ C I ∪ CII ∪ CIII . On C I and 
CII we find mixed equilibria in which, respectively, bidder 1 and bidder 2 bid zero with positive probability. On CIII both 
bidders bid m with probability 1 in equilibrium. The boundary cases S ∪ T ∪ U are treated separately in Proposition 3.

Proposition 2. For (α, m) ∈ C I ∪ CII ∪ CIII the all-pay auction with bid-cap has a unique equilibrium. Denote by πi the equilibrium 
payoff of bidder i. Denote by (c1, d1, c2, d2,b) the parameters characterizing bidding strategies of the form (1).

(i) For (α, m) ∈ C I , expected payoffs are π1 = 0 and

π2 = v2 −
(

α2

(1 − α)2
v1 +

(
1 − α2

(1 − α)2

)
m

)
.

The equilibrium bidding strategies are given by

(c1,d1, c2,d2,b) =
(

π2

v2
,

α(v1 − m)

(1 − α)2 v2
, 0,

v1 − m

(1 − α)v1
,

m − αv1

1 − α

)
. (2)

(ii) For (α, m) ∈ CII , expected payoffs are π2 = 0 and

π1 = v1 −
(

(1 − α)2

α2
v2 +

(
1 − (1 − α)2

α2

)
m

)
.

The equilibrium bidding strategies are given by

(c1,d1, c2,d2,b) =
(

0,
v2 − m

αv2
,

π1

v1
,

(1 − α)(v2 − m)

α2 v1
,

m − (1 − α)v2

α

)
. (3)

(iii) For (α, m) ∈ CIII , expected payoffs are π1 = αv1 − m and π2 = (1 − α)v2 − m. The equilibrium bidding strategies are given by

(c1,d1, c2,d2,b) = (0,1,0,1,0) .

Proposition 3 characterizes the sets of equilibria in the boundary cases S ∪ T ∪ U .

Proposition 3.

(i) For (α, m) ∈ S the unique equilibrium is given by

(c1,d1, c2,d2,b) =
(

0,
α(v1 − v2)

(1 − 2α)v2
, 0,

(1 − α)(v1 − v2)

(1 − 2α)v1
,

(1 − α)v2 − αv1

1 − 2α

)
.

(ii) For (α, m) ∈ T with α < α∗ the set of all equilibria is given by all strategy pairs of the form (1) with

(c1,d1, c2,d2,b) = (θ, 1 − θ, 0, 1, 0) where θ ∈
[

0,1 − m

(1 − α) v2

]
.
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(iii) For (α∗, m∗) ∈ T where m∗ = m1(α
∗) the unique equilibrium is given by

(c1,d1, c2,d2,b) = (0, 1, 0, 1, 0) .

(iv) For (α, m) ∈ T with α > α∗ the set of all equilibria is given by all strategy pairs of the form (1) with

(c1,d1, c2,d2,b) = (0, 1, θ, 1 − θ, 0) where θ ∈
[

0,1 − m

α v1

]
.

(v) For (α, m) ∈ U \ {(0, v2)}, the unique equilibrium is given by

(c1,d1, c2,d2,b) =
(

0, 0, 1 − v2

v1
, 0, v2

)
.

(vi) For (α, m) = (0, v2) ∈ U , the set of all equilibria is given by all strategy pairs of the form (1) with

(c1,d1, c2,d2,b) =
(

0, 0, θ, 1 − v2

v1
− θ, v2

)
where θ ∈

[
0,1 − v2

v1

]
.

Let us close this section with some observations about the structure of equilibria.

Remark 1.

(i) Compared to the case α = 1
2 considered by Che and Gale (1998), we observe a considerable variety in possible equi-

librium outcomes. For any m and α ∈ {0, 1}, there are equilibria with payoffs given by (π1, π2) = (0, v2 − m) and 
(π1, π2) = (v1 − m, 0). A broad range of parameters yields mixed equilibria in which the weaker bidder 2 earns a 
positive payoff. Equilibria of this type do not exist for α = 1

2 .
(ii) In light of Proposition 2, Che and Gale’s observation that mixed equilibrium payoffs are not influenced by m is an 

artifact of the case α = 1
2 . Within CII , π1 is increasing in m for α > 1

2 and decreasing for α < 1
2 .

(iii) Comparing Cases (v) and (vi) of Proposition 3, we see that for m = v2 the equilibrium of the unconstrained complete 
information all-pay auction remains an equilibrium. Always breaking ties in favor of the weaker bidder does however 
destroy its uniqueness.

Equilibrium non-uniqueness in Proposition 3 arises because one bidder has some probability mass which he can place 
either in 0 or in m. The other bidder’s equilibrium strategy is identical across all equilibria. The next corollary shows that, 
in the limit ε ↓ 0, the unique equilibrium for m − ε is arbitrarily close to the equilibrium in which the indifferent bidder 
never bids zero. These are the equilibria with θ = 0 in Proposition 3.

Corollary 2. Let (α, m) ∈ T ∪ {(0, v2)} and let ε > 0 be sufficiently small to guarantee (α, m − ε) ∈ C I ∪ CIII . Define p(ε) =
(c1(ε), d1(ε), c2(ε), d2(ε),b(ε)) as the parameter vector which characterizes the unique equilibrium of the game with tie-breaking 
probability α and cap m − ε from Proposition 2 (i) and (iii). For (α, m) ∈ T , we have

lim
ε↓0

p(ε) = (0,1,0,1,0)

and for (α, m) = (0, v2), we have

lim
ε↓0

p(ε) =
(

0,0,0,1 − v2

v1
, v2

)
.

The limits thus correspond to the case θ = 0 in Proposition 3 (ii, iv, vi).

The corollary is a direct consequence of Propositions 2 and 3. Convergence of the parameter vectors implies convergence 
of expected equilibrium bids, see Formula (4) below. In Section 4, we consider a designer who maximizes the expected 
sum of bids. In all cases of equilibrium multiplicity, the equilibrium with θ = 0 yields the highest expected sum of bids. 
Corollary 2 shows that the designer can enforce a unique equilibrium arbitrarily close to the equilibrium with θ = 0 by 
marginally decreasing the bid-cap. We thus follow Che and Gale (1998) and always solve equilibrium multiplicity in favor 
of the equilibrium with the highest expected sum of bids, θ = 0.
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4. The designer’s problem

We now analyze the designer’s problem of maximizing the expected sum of bids through the choice of α and m. The 
designer’s objective is thus given by maximizing

σ(α,m) =
2∑

i=1

(
(1 − ci − di)

b

2
+ dim

)
(4)

where the values of ci , di and b corresponding to (α, m) are given in Propositions 2 and 3.6 For (α, m) ∈ CIII ∪ T we have 
σ(α, m) = 2m. Within that triangle it is thus optimal to choose m as large as possible. The optimum is given by the tip 
of the triangle (α∗, m∗) with α∗ defined in Definition 1 and m∗ = m1(α

∗). The next lemma characterizes the monotonicity 
behavior of σ on C I ∪ CII .

Lemma 1. For (α, m) ∈ C I and for (α, m) ∈ CII with α > 1
2 , σ(α, m) is increasing in m. For (α, m) ∈ CII with α < 1

2 , σ(α, m) is 
decreasing in m.

Thus imposing a stricter bid-cap lowers the sum of bids in the region C I and in the part of CII which lies to the 
right of CG . For intermediate values of α, lowering the bid-cap has a positive effect on the sum of bids. Intuitively, in the 
former case a smaller bid cap increases an existing advantage of one bidder and thus weakens competition. In the latter, 
intermediate case, decreasing the bid cap strengthens competition since it alleviates ex ante differences coming from the 
differing valuations. Proposition 4, the main result of this section, shows that (α∗, m∗) is the globally optimal policy.

Proposition 4. The unique optimal policy for sup(α,m)∈C σ(α, m) is given by P∗ = (α∗, m∗). The resulting optimal expected sum of 
bids is σ ∗(v1, v2) = 2v1 v2

v1+v2
.

Compared to Che and Gale’s optimal policy P CG under the constraint α = 1
2 , P CG = (αCG, mCG) = ( 1

2 , v2
2 ), the designer 

thus imposes a higher bid-cap and a tie-breaking rule which favors the weaker bidder.
The next result shows that the designer can do better than the Che–Gale policy even if he is restricted to simple 

tie-breaking rules. Simple tie-breaking rules are those which break ties either symmetrically or always in favor of the same 
bidder, α ∈ {0, 1

2 , 1}.

Proposition 5. Define C R =
{

0, 1
2 , 1

}
× (0, v2]. The unique optimal policy for sup(α,m)∈C R

σ(α, m) is given by P R = (αR , mR) =
(0, v2). The resulting optimal expected sum of bids is σ R(v1, v2) = 3

2 v2 − 1
2

v2
2

v1
.

In the optimal simple policy, ties are always broken in favor of the weaker bidder. Further, the policy imposes a bid-cap 
equal to the weaker bidder’s valuation. The resulting game is almost the standard complete information all-pay auction. 
Yet instead of sometimes bidding zero, the weak bidder sometimes submits a preemptive bid, see Proposition 3 (vi) with 
θ = 0.7

We close this section with a quantitative comparison of the policies P∗ , P R and P CG . We also include a policy P 0 =
(α0, m0) = ( 1

2 , v2) which implements the equilibrium of the standard complete information all-pay auction. The sums of 

bids associated with P CG and P 0 are given by σ CG(v1, v2) = v2 and σ 0(v1, v2) = v2
2 + 1

2
v2

2
v1

. Considering the limits v1 ↑ ∞
and v1 ↓ v2 we obtain the following.

Corollary 3. Fix v2 > 0 and define

�(v1) =
(
σ ∗(v1, v2), σ R(v1, v2), σ CG(v1, v2), σ 0(v1, v2)

)
.

The limiting behavior of the sums of bids is given by limv1↑∞ �(v1) =
(

2, 3
2 , 1, 1

2

)
· v2 and limv1↓v2 �(v1) = (1, 1, 1, 1) · v2 .

Notice that policies P∗ and P R manage to exploit large values of v1: σ ∗(v1, v2) and σ R(v1, v2) are increasing in v1
for fixed v2. In contrast, σ CG(v1, v2) is independent of v1 and σ 0(v1, v2) is decreasing in v1. This monotonicity behavior, 

6 Our selection of equilibria guarantees that σ(α, m) is upper-hemicontinuous. A different selection criterion would not affect the global optimization in 
Proposition 4 since equilibrium is unique at the optimizer. In Proposition 5, the supremum would remain identical but it would not necessarily be attained. 
Almost-optimal strategies with marginally smaller m would however survive. The latter also applies to the optimization for α = 1

2 in Che and Gale (1998).
7 Hart (2014) shows that essentially the same pair of equilibrium strategies as under P R also arises in the optimum when the designer is restricted to 

α = 1
2 but can implement asymmetric bid-caps.
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together with Corollary 3, implies that the optimal policy P∗ is at most twice as good as the policy of Che and Gale and at 
most four times as good as the unrestricted all-pay auction.

5. Discussion

Reducing the sum of bids Che and Gale (1998)’s initial motivation for considering bid-caps in political lobbying is that bid-
caps are often imposed in an attempt to reduce lobbying efforts. They find that contrary to this goal, bid-caps may increase 
lobbying.

Our analysis implies that this counter-intuitive effect is reversed if ties are broken suitably, e.g. in favor of the strong 
bidder. One can show that for a fixed bid-cap m setting α = 1 minimizes the expected sum of bids. For any m ∈ (0, v2) this 
leads to a reduction in the sum of bids. In fact, coupled with tie-breaking in favor of the stronger bidder, bid-caps have 
just the effect which one might naively expect from a bid-cap: Compared to the unrestricted auction, bidding on (0, m) is 
unaffected. The stronger bidder moves mass from (m, v2) into an atom at m. The weaker bidder increases his atom at 0 by 
the mass he previously had in (m, v2).

Maximizing the winning bid In some applications, the designer may be interested in maximizing the expected winning bid 
instead of the expected sum of bids. In such a situation, the designer can improve upon the unrestricted all-pay auction 
policy P 0 by setting a bid-cap and a suitable tie-breaking rule: Policy P R induces higher bids from the weaker bidder 
without having an impact on the stronger bidder’s behavior. Thus the designer can always improve upon the unrestricted 
all-pay auction. In fact, one can show that P R is the optimal policy with regard to maximization of the expected winning 
bid.

The symmetric case If v1 = v2 = v , symmetric tie-breaking levels the playing field completely. Therefore, no asymmetric 
tie-breaking or bid-cap can increase the expected sum of bids. The next proposition characterizes all equilibria of the 
symmetric case.

Proposition 6. Suppose v1 = v2 = v. Define m1 , T and CIII as in Definition 1.

(i) For (α, m) ∈ C \ (T ∪ CIII) with α ≤ 1
2 , there exists a unique equilibrium. Expected equilibrium payoffs are π1 = 0 and

π2 =
(

1 − α2

(1 − α)2

)
(v − m).

The equilibrium bidding strategies are given by

(c1,d1, c2,d2,b) =
(

π2

v
,

α(v − m)

(1 − α)2 v
, 0,

v − m

(1 − α)v
,

m − αv

1 − α

)
. (5)

(ii) For (α, m) ∈ C \ (T ∪ CIII) with α > 1
2 , there exists a unique equilibrium. Expected equilibrium payoffs are π2 = 0 and

π1 =
(

1 − (1 − α)2

α2

)
(v − m).

The equilibrium bidding strategies are given by

(c1,d1, c2,d2,b) =
(

0,
v − m

αv
,

π1

v
,

(1 − α)(v − m)

α2 v
,

m − (1 − α)v

α

)
. (6)

(iii) For (α, m) ∈ T ∪ CIII , all equilibria are as in Proposition 2 (iii) and Proposition 3 (ii–iv).

The structure of equilibria resembles the asymmetric case. There are still three regions, one with a pure equilibrium and 
two with mixed equilibria in which either of the bidders earns a positive payoff. The pure equilibrium which maximizes the 
sum of bids still arises for (α∗, m∗) = ( 1

2 , v
2 ). P∗ and P CG thus coincide in the symmetric case. The expected sum of bids v

is the same as in an unrestricted complete information all-pay auction. The main qualitative difference to the asymmetric 
case is that the boundary S between the two mixed cases has a different shape: It no longer connects (α∗, m∗) with one of 
the corners. Instead, it is symmetric and connects (α∗, m∗) = ( 1

2 , v
2 ) with ( 1

2 , v).

Appendix A. Proofs

Throughout the proofs we sometimes refer to the two bidders as i and j, implying that a statement holds for (i, j) =
(1, 2) and ( j, i) = (1, 2). We define α1 = α and α2 = 1 − α.
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Proof of Proposition 1. The proof proceeds in three steps: In the first step, we show that the functions Fi are continuous 
over (0, m). This implies that only 0 and m can be played with positive probability in equilibrium. The second step shows 
that if equilibrium strategies contain mixing over a subset of [0, m], this subset must be an interval which goes down to zero 
and is identical for both bidders. In the third step, we pin down the behavior of Fi over (0,b). Collecting the observations 
of Steps 1–3 allows to conclude the proof.
Step 1: F1 and F2 are continuous over (0, m). Moreover, we have F1(0) = 0 or F2(0) = 0.

Recall that as cumulative distribution functions F1 and F2 are right-continuous, (weakly) increasing and bounded. In 
particular, the functions Fi possess left limits, i.e. Fi(b−) := limx↑b Fi(x) is well-defined. We define Fi(0−) := 0.

To prove continuity we first show that F1 and F2 cannot both have an atom at some b ∈ [0, m). The proof is by con-
tradiction. Suppose there exists b ∈ [0, m) with Fi(b) > Fi(b−) > 0 for i = 1, 2. This entails that both bidders earn their 
equilibrium payoff when bidding b. The equilibrium payoff of bidder 1 is thus

v1(α(F2(b) − F2(b
−)) + F2(b

−)) − b. (7)

Now consider bidder 1’s payoff from playing b + ε for some ε > 0 with the property that F2 is continuous at b + ε:

v1 F2(b + ε) − b − ε. (8)

Since F2 is monotonic, any neighborhood of b contains infinitely many points where F2 is continuous. We can thus choose 
ε > 0 arbitrarily small, so that (8) is arbitrarily close to v1 F2(b) − b by rightcontinuity of F2. For α < 1 and sufficiently 
small ε, the payoff from playing b + ε thus strictly dominates (7). For α > 0, an analogous profitable deviation exists for 
bidder 2. Thus F1 and F2 cannot have a simultaneous atom at some b ∈ [0, m). In particular, F1(0) > 0 implies F2(0) = 0
and vice versa.

To conclude the proof of Step 1, it thus suffices to prove that there does not exist b ∈ (0, m) with F j(b) > F j(b−) and 
Fi(b) = Fi(b−). The proof is again by contradiction and distinguishes two cases. Suppose first that such a b exists and in 
addition that there exists ε > 0 such that Fi is constant over (b − ε, b]. Since bidder j bids b with positive probability, 
he must earn his equilibrium payoff from this bid. Yet he can profitably deviate to bidding inside (b − ε, b] which entails 
the same probability of winning at lower costs since Fi is constant. Now consider the other case: Fi is non-constant over 
(b − ε, b] for any sufficiently small ε. In this case, bidder i earns his equilibrium payoff from bidding slightly below b. This 
payoff is arbitrarily close to vi F j(b−) − b. As in the case of simultaneous atoms, one sees that bidder i can secure himself a 
payoff arbitrarily close to vi F j(b) − b by bidding slightly above b. This is a profitable deviation and thus a contradiction.
Step 2: There exists b ∈ [0, m] such that F1 and F2 are strictly increasing over [0,b] and constant over [b, m).

We first observe that if Fi is constant over an interval (b1, b2) ⊆ (0, m) then F j is constant over this interval as well: 
Suppose otherwise, i.e. there exists an interval over which F j is increasing while Fi is constant. Then bidder j earns his 
equilibrium payoff at different points in the interval. These points have identical probability of winning but different bid 
costs. This leads to a contradiction. Thus the sets over which Fi and F j are increasing must be identical.

To conclude the proof of Step 2, it suffices to show that if Fi is increasing over an interval (b1, b2), Fi is increasing over 
(0, b2). Suppose otherwise, i.e., there exist 0 < b0 < b1 < b2 such that F1 and F2 are constant over (b0, b1) and increasing 
over (b1, b2). Thus, bidder i earns his equilibrium payoff from bidding b1. Since F j is continuous and constant over [b0, b1], 
bidder i has identical probability of winning and smaller bid costs from bidding b0. This is a profitable deviation.
Step 3: Consider b from Step 2. If b > 0 then vi F j(b) − b is constant in b for b ∈ (0,b) and i �= j. In particular, F ′

j(b) = 1
vi

.

Step 3 follows from the fact that each bidder must earn the same payoff at each point in the interval (0, b). �
Proof of Corollary 1. (i): By Proposition 1 there are only three candidates for pure equilibria: Both bidders bidding m, or 
one bidder bidding m while the other bidder bids 0. The latter asymmetric candidates cannot be equilibria since the bidder 
bidding m can profitably deviate to a smaller bid where he still wins the auction with certainty.

(ii): Consider first an equilibrium in which ci > 0 and c j = 0. In that case bidder i earns an expected equilibrium payoff of 
zero, since he bids 0 with positive probability while his opponent bids more with probability 1. Similarly, in an equilibrium 
with ci = c j = 0 and b > 0, both bidders must earn their equilibrium payoffs from bids arbitrarily close to 0, implying that 
both bidders earn 0 in equilibrium.

(iii): If both bidders earn a positive payoff if both bid m, this pair of strategies is an equilibrium since deviating to a 
smaller bid implies a non-positive expected payoff. Moreover, if bidder i earns a positive expected payoff if j bids m with 
certainty then bidder i earns a positive expected payoff from bidding m against any bidding strategy of j. This implies 
uniqueness: If there was another equilibrium, one of the bidders would earn 0 in that equilibrium by (ii). That bidder could 
profitably deviate to bidding m and earning a strictly positive payoff. �
Proof of Proposition 2. We begin with (iii) where (α, m) ∈ CIII and thus m < m1(α), i.e.,

α1 v1 − m > 0 and α2 v2 − m > 0. (9)

This implies that each bidder earns a strictly positive expected payoff from bidding m against an opponent who bids m. 
Thus, both bidders bidding m with certainty is the unique equilibrium by Corollary 1 (iii). The proof of Cases (i) and (ii) 
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proceeds in a number of steps. We first identify a unique equilibrium candidate for each case and then prove that the 
candidate is indeed an equilibrium. Step 1 shows that any equilibrium must involve mixing over an interval (0, b) ⊂ [0, m]:
Step 1: Let (α, m) ∈ C I ∪ CII . Then any equilibrium is of the form (1) with b > 0.

Since (α, m) ∈ C I ∪ CII , one of the conditions in (9) is strictly reversed, i.e., we have α1 v1 < m or α2 v2 < m. Thus, both 
bidders bidding m is not an equilibrium. It remains to prove that no equilibrium exists in which bidders mix over the set 
{0, m}. Suppose otherwise: Since at most one bidder bids 0 with positive probability by Proposition 1, it suffices to consider 
pairs of strategies where bidder i bids m while bidder j bids 0 with probability c j ∈ (0, 1) and m otherwise. Thus bidder 
j earns zero payoff in equilibrium. Since bidder j must be indifferent between bidding 0 and bidding m, it must thus 
hold that α j v j − m = 0. Moreover, since one of the conditions in (9) is strictly reversed, we must have αi vi − m < 0. For 
sufficiently small ε > 0 and all c j ∈ (0, 1), bidder i’s equilibrium payoff of (c j + αi(1 − c j))vi − m is thus strictly smaller 
than his payoff of c j vi − ε from bidding ε.

In the remainder of the proof, we first settle the case α ∈ (0, 1). The case α ∈ {0, 1} is considered separately in Step 6.
Step 2: Let (α, m) ∈ C I ∪ CII with α ∈ (0, 1). If an equilibrium exists, it is given by (1) with parameters satisfying b ∈ (0, m), d1 > 0
and d2 > 0.

To prove this claim, we have to show that anything else would lead into contradictions. Suppose first that d1 = d2 = 0
and b ∈ (0, m]. The expected equilibrium payoff of bidder i must then equal the payoff from bidding b which is given by 
vi − b ≥ vi −m > 0. This contradicts the fact that at least one bidder earns 0 in equilibrium. Thus at least one bidder i must 
have di > 0.

Next, suppose that di > 0 and b = m. Then, since α ∈ (0, 1), bidder j earns a strictly higher payoff from bidding m than 
from bids slightly below m. These bids are in the support of his equilibrium strategy since b = m, implying a contradiction. 
We thus know that in any equilibrium di > 0 for at least one bidder and b < m. It remains to prove that d j > 0. Suppose 
otherwise, i.e. di > 0 but d j = 0. Since b < m, F j is constant over [b, m], so that bidder i can profitably deviate to a bid in 
(b, m) instead of bidding m. We must thus have di > 0 and d j > 0.
Step 3: Let (α, m) ∈ C I ∪ CII with α ∈ (0, 1). Denote by eI and eII the vectors (c1, d1, c2, d2,b) defined, respectively, in (2) and (3). 
If an equilibrium exists, it is given by (1) with parameters given either by eI or eII .

We have seen so far that in equilibrium both bidders mix over (0, b) with positive probability and bid m with positive 
probability. Bidders i and j must thus each earn the same equilibrium payoffs πi and π j from bidding m, b and (slightly 
above) 0. This yields the conditions

πi = (αid j + (1 − d j))vi − m, πi = (1 − d j)vi − b and πi = c j vi, (10)

as well as

π j = (α jdi + (1 − di))v j − m, π j = (1 − di)v j − b and π j = ci v j. (11)

Moreover, we know that in equilibrium at most one bidder bids zero with positive probability, i.e., we either have c2 = 0 or 
c1 = 0. Each of the two possibilities turns (10) and (11) into a linear system of six equations which can be solved uniquely 
for the respective remaining six unknowns π1, π2, c1, d1, d2,b, or π1, π2, c2, d1, d2,b. The two solutions correspond to the 
vectors eI and eII .

The next step establishes a unique equilibrium candidate for each case.
Step 4: Let (α, m) ∈ C I with α ∈ (0, 1). If an equilibrium exists, it is given by (1) with parameters given by eI . Analogously, let 
(α, m) ∈ CII with α ∈ (0, 1). If an equilibrium exists, it is given by (1) with parameters given by eII .

By Step 3, it suffices to show that eII does not correspond to an equilibrium for (α, m) ∈ C I and that eI does not 
correspond to an equilibrium for (α, m) ∈ CII . Recall that in equilibrium we must have πi ≥ 0 and π j ≥ 0 and that the two 
equilibrium candidates are derived from the system of equations (10) and (11) under the respective additional constraints 
c j = 0 and ci = 0. In the following, we determine conditions under which the system of equations (10) and (11) augmented 
by c j = 0 implies an equilibrium candidate with non-negative values of πi and π j . Afterwards, the result follows from 
symmetry arguments and elementary calculations.

Consider the solution to (10) and (11) augmented by c j = 0. We then have πi = 0 and it remains to determine whether 
π j ≥ 0. We start with some preliminary calculations: We insert πi = c j vi into the first two equations of (10) and solve the 
resulting two equations for m and b. We do the same calculation for π j = ci v j and (11) and equate the two expressions for 
m and b. This gives

vi(1 − c j − (1 − αi)d j) = v j(1 − ci − (1 − α j)di) and vi(1 − c j − d j) = v j(1 − ci − di).

Subtracting these two equations from each other leads to

di = d j
αi

α j

vi

v j
. (12)

From c j = 0 and (10) it follows that

d j = vi − m
and b = vi − vi − m

. (13)

vi(1 − αi) 1 − αi
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We next study under which conditions we have π j ≥ 0. Using (12), (13) and the fact that αi = 1 − α j , it follows that

π j = v j(1 − di) − b = v j − vi +
(

1

α j
− αi

α2
j

)
(vi − m).

Further rewriting the right hand side, we conclude that π j ≥ 0 is equivalent to

π j = v j − vi + 1

α j

(
2 − 1

α j

)
(vi − m) ≥ 0.

Viewed as a function of z = 1/α j , π j is a quadratic polynomial with negative leading coefficient. This type of polynomial is 
non-negative only between its two zeros (if those exist, see below). Solving the quadratic equation we find that π j ≥ 0 is 
equivalent to

1 −
√

1 + v j − vi

vi − m
≤ 1

α j
≤ 1 +

√
1 + v j − vi

vi − m
(14)

which is in turn equivalent to

−
√

v j − m

vi − m
≤ 1 − α j

α j
≤

√
v j − m

vi − m
.

The final expression shows that the term under the square-root in (14) is always non-negative. This implies that the 
quadratic equation indeed possesses two zeros. Thus, the equilibrium candidate we derived under the condition c j = 0
leads to πi ≥ 0 and π j ≥ 0 if and only if

αi

α j
≤

√
v j − m

vi − m
. (15)

Exchanging the roles of i and j and rearranging terms, we obtain that the equilibrium candidate in the other case ci = 0
leads to πi ≥ 0 and π j ≥ 0 if and only if

αi

α j
≥

√
v j − m

vi − m
.

Hence, except in the boundary case in which (15) holds with equality, we have identified a unique equilibrium candidate for 
all (α, m) ∈ C I ∪ CII . It remains to check that the boundary case in which (15) holds with equality is the boundary segment 
S between C I and CII . To this end, set i = 1, j = 2, αi = α and recall that v1 ≥ v2. Consider the boundary case

α

1 − α
=

√
v2 − m

v1 − m
.

Since the left hand side is positive, this is equivalent to

m

(
1 −

(
α

1 − α

)2
)

= v2 −
(

α

1 − α

)2

v1, (16)

i.e.

v2 = βv1 + (1 − β)m where β =
(

α

1 − α

)2

.

Since m < v2 < v1, this equation can only hold for β ∈ (0, 1) which is equivalent to α ∈ (0, 12 ). For α < 1
2 , (16) can be 

rewritten to

m = v2 − α2

1 − 2α
(v1 − v2), (17)

where the right hand side corresponds to m2 from Definition 1, and thus to the boundary between C I and CII .
Step 5: For (α, m) ∈ C I with α ∈ (0, 1) the unique equilibrium is given by (1) with parameters given by eI . Analogously, for (α, m) ∈ CII

with α ∈ (0, 1) the unique equilibrium is given by (1) with parameters given by eII .
By Step 4, it remains to prove that the unique equilibrium candidates are indeed equilibria. In the proof of Step 4 we 

already saw that the implied equilibrium payoffs are non-negative. By construction, the candidate functions Fi and F j are 
increasing over (0,b) if b ∈ (0, m) and they imply identical payoffs from bidding in [0,b) and in m. It remains to prove that 
the candidates are valid distribution functions, i.e., we have b ∈ (0, m), ci, di ∈ [0, 1] and ci +di +b/v j = 1. A straightforward 
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calculation shows that the final normalization condition is fulfilled in all cases. From πi , π j ≥ 0 it follows that the numbers 
ci and di are indeed non-negative. It remains to check that b ∈ (0, m). ci, di ≤ 1 then follows from b ≥ 0 and normalization.

In Case (i), we have b = (m −αv1)/(1 −α) so that b < m is equivalent to m < v1 and thus satisfied. b > 0 is equivalent to 
m > αv1. For (α, m) ∈ C I we have α < α∗ . Thus m > αv1 follows from m > m1(α). The last assertion holds by the definition 
of C I .

In Case (ii), we have b = (m − (1 − α)v2)/α. b < m is thus equivalent to m < v2 and satisfied. b > 0 is equivalent to 
m > (1 − α)v2. We now distinguish two cases: For α ≥ α∗ the assertion follows from m > m1(α) = (1 − α)v2 analogously 
to Case (i). For (α, m) ∈ CII with α < α∗ , we have m > m2(α) by the definition of CII . Observing that m2(α) ≥ (1 − α)v2 is 
equivalent to α ≤ α∗ concludes the proof of Step 5.
Step 6: The claim of the proposition also holds for α ∈ {0, 1}.

Suppose αi = 0. Recall that Step 1 of the proof applies so that we have a mixed equilibrium in which one bidder 
earns zero. Since we have αi = 0 and m < v j , bidder j receives a strictly positive payoff from bidding m regardless of his 
opponent’s strategy, implying c j = 0 and πi = 0. Arguing as in the proof of Step 2, we can exclude equilibrium candidates 
with di = d j = 0 and b ∈ (0, m]. Likewise, we can exclude candidates where b < m and where exactly one bidder has an 
atom at m, i.e., di > 0, d j = 0 or d j > 0, di = 0. We can also rule out candidates with b < m, di > 0 and d j > 0 since bidder 
i would earn more from bidding b than from bidding m. Thus b = m.

Solving the conditions b = m, c j = 0 and the normalization condition c j + d j + b/vi for d j pins down a unique candidate 
for the equilibrium strategy of bidder j. To determine the strategy of bidder i, observe that bidder j’s equilibrium payoff 
must equal his payoff from bidding m which is given by π j = v j − m. Arguing as in Step 3 yields π j = ci v j , and thus 
ci = 1 − m/v j . The condition ci + di + b/v j = 1 implies di = 0 since ci + m/v j = 1. This identifies a unique equilibrium 
candidate. It is straightforward to see that it is indeed an equilibrium and that it corresponds to the special cases α = 0 of 
Case (i) and α = 1 of Case (ii). �
Proof of Proposition 3. (i): Recall that (α, m) ∈ S is the boundary case between Cases (i) and (ii) of Proposition 2. The proof 
of that proposition implicitly contains the result that the two equilibrium candidates given in (2) and (3) are equilibria for 
(α, m) ∈ S . Uniqueness follows from checking that the two equilibria coincide for (α, m) ∈ S and correspond to the candidate 
given in (i).

(ii) and (iv): We have αi vi = m and α j v j > m with (i, j) = (1, 2) in Case (ii) and (i, j) = (2, 1) in Case (iv). Thus, both 
bidders bidding m is a pure equilibrium in which only bidder j makes a strictly positive payoff. Hence there does not exist 
an equilibrium in which both bidders earn a strictly positive payoff by Corollary 1. Since bidder j can secure a strictly 
positive payoff against any strategy of i, we must have c j = 0, π j > 0 and πi = 0. αi vi = m implies that bidder i can earn 
a strictly positive payoff from bidding m unless d j = 1. Thus d j = 1 and b = 0 in any equilibrium. To identify all equilibria, 
it suffices to identify the combinations of ci and di = 1 − ci which correspond to equilibria. Bidder i earns zero from bidding 
0 and from bidding m and a negative payoff from bidding in between. He thus cannot profitably deviate. Bidder j’s most 
profitable deviation is always given by bidding slightly above 0, thereby winning the auction with probability ci at arbitrarily 
small costs. ci ∈ [0, 1] yields an equilibrium whenever bidding m dominates this deviation. This holds if and only if

ci v j ≤ (ci + α j(1 − ci))v j − m, (18)

which is equivalent to ci ≤ 1 − m/(α j v j). This concludes the proof.
(iii): The proof is similar to that of (ii) and (iv). We have αi vi = m and α j v j = m, implying that di = d j = 1 yields an 

equilibrium in which both bidders earn zero payoff. There thus does not exist an equilibrium where both bidders earn a 
positive payoff. In any equilibrium with di < 1 and d j < 1, both bidders would earn a strictly positive payoff from bidding 
m since αi vi = m and α j v j = m. Thus b = 0 and di = 1 or d j = 1 holds in any equilibrium. We studied the remaining 
equilibrium candidates in the proof of (ii) and (iv): To rule them out, it suffices to verify that condition (18) and the 
symmetric condition with i and j interchanged collapse to ci ≤ 0 and c j ≤ 0 in Case (iii).

(v) and (vi): Arguing as in the proof of Step 2 of Proposition 2, we see that there do not exist equilibria with b < m and 
d1 = d2 = 0 or d1 > 0, d2 = 0 or d2 > 0, d1 = 0. Furthermore, b < m cannot hold in equilibrium: Consider the remaining case 
d1 > 0, d2 > 0 and b < m. If α = 0, bidder 1 can profitably deviate from bidding m to bidding b. If α > 0, bidder 2 earns a 
strictly negative payoff from bidding m since v2 = m, a contradiction to equilibrium. We thus have b = m = v2. Bidder 1’s 
normalization condition c1 + d1 + b/v2 = 1 yields c1 = d1 = 0 in any equilibrium. This uniquely pins down his equilibrium 
strategy. For bidder 2, normalization implies c2 + d2 = 1 − v2/v1. Hence, there cannot exist any equilibria in addition to the 
candidates listed in Case (vi). In Case (vi), a straightforward calculation shows that all the candidates indeed correspond to 
equilibria. In Case (v), we can further rule out d2 > 0: Since b = m, bidder 1 earns his equilibrium payoff from bids right 
below m. Yet if d2 > 0 and α > 0, bidder 1 can profitably deviate to bidding m. �
Proof of Lemma 1. Using the explicit expressions for ci , di and b given in Cases (i) and (ii) of Proposition 2 it follows for 
(α, m) ∈ C I that

dσ(α,m) = (1 − 2α)(m(v1 − v2) + v1 v2)

2
.

dm (1 − α) v1 v2
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This expression is positive since α < 1
2 for (α, m) ∈ C I and v1 > v2. For (α, m) ∈ CII we obtain

dσ(α,m)

dm
= (2α − 1)(v1(v2 − m) + mv2)

α2 v1 v2
.

Since v2 > m, this derivative is positive for α > 1
2 and negative for α < 1

2 . �
Proof of Proposition 4. We first prove the following claim: If (α, m) is a solution to the optimization problem, then (α, m) ∈
S = S ∪ {(0, v2)} ∪ {(α∗, m∗)}.

Recall that (α∗, m∗) is strictly optimal for the designer within T ∪ CIII . Furthermore, (α∗, m∗) is strictly better than the 
unrestricted all-pay auction and thus σ(α∗, m∗) > σ(α, m) for all (α, m) ∈ U with α > 0. Observe that the equilibrium 
non-uniqueness at (α, m) ∈ T \ (α∗, m∗) is such that probability mass is shifted from m to zero as (α, m) moves from CIII

to C I ∪ CII for fixed α and increasing m. Thus, the function σ(α, m) makes a downwards jump when passing the line T for 
fixed α and increasing m (except in the case α = α∗).

Now keep α fixed and increase m from 0 to v2. We distinguish three cases: α > 1
2 , α ∈ [α∗, 12 ] and α < α∗ . Consider first 

the case α > 1
2 . By Lemma 1, σ(α, m) is increasing until T is reached. There it jumps downwards and then increases again 

until m = v2. This yields two local maxima and thus two potential candidates for optimal values of σ(α, ·): The unique 
(α, m) with (α, m) ∈ T and (α, v2) ∈ U . Both points are dominated by (α∗, m∗).

Now consider a fixed α ∈ (α∗, 12 ]. In this case σ(α, m) is increasing in m until T is reached. Then there is a downwards 
jump and then σ(α, m) decreases until U is reached. In this case, there is a unique maximizer m of σ(α, ·) with (α, m) ∈ T . 
Again, (α∗, m∗) dominates.

Finally consider the case of α ≤ α∗ . Similar to the first case, there are two local maximizers of σ(α, ·), one with (α, m) ∈
T and one with (α, m) ∈ S . For the first one it is clear that it is dominated by (α∗, m∗). Thus global maximizers must lie in 
S and the prove of the claim is complete.

It remains to maximize σ(α, m2(α)) in α ∈ [0, α∗] since S can be written as S = {(α, m)|α ∈ [0, α∗], m = m2(α)}. We 
calculate

dσ(α,m2(α))

dα
= α(1 − α)(v1 − v2)

3

(1 − 2α)v1 v2
> 0.

Thus it is optimal to choose α as large as possible: (α∗, m2(α
∗)) = (α∗, m∗) is a global optimizer. �

Proof of Proposition 5. For α = 1
2 the optimal value m = v2

2 is known from Che and Gale (1998). For α ∈ {0, 1} it suffices 
to consider m = v2 by Lemma 1. A direct comparison of the three candidates yields the result of the proposition. �
Proof of Proposition 6. The proofs of Proposition 1, of Corollary 1, of Steps 1, 2, 3, and 6 of Proposition 2 and of Propo-
sition 3 (ii–iv) do not rely on the asymmetry assumption and still apply in the symmetric case. This proves part (iii) of 
Proposition 6. It also implies that the strategy pairs identified in Step 3 of the proof of Proposition 2 are the only equilib-
rium candidates for (α, m) ∈ C \ (CIII ∪ T ) with m < v . These two candidates are stated in parts (i) and (ii) of Proposition 6
for the symmetric case. The equilibrium payoffs πi stated in part (i) are non-negative for both bidders if and only if α ≤ 1

2 . 
The equilibrium payoffs πi stated in part (ii) are non-negative for both bidders if and only if α ≥ 1

2 . Since the two equilib-
rium candidates coincide for α = 1

2 , it follows that we have identified a unique equilibrium candidate for both α ≤ 1
2 and 

α > 1
2 . The proof that the two candidates define valid distribution functions is similar to the proof of Step 5 of Proposi-

tion 2. It remains to consider the case v = m. It follows like in the proof of Proposition 3 (v) that b = v in this case. The 
normalization conditions ci + di + b/v = 1 thus imply ci = di = 0 for both bidders. We have thus identified the equilibrium 
of the unconstrained all-pay auction as the unique equilibrium candidate. �
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