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Abstract

I propose an auction model which reflects a situation in which
one bidder faces competitors who are much better informed about the
prize’s quality. Situations like this might occur in market entry situ-
ations like the recent 5G spectrum auction in Germany, where after
intense bidding, a new market entrant managed to obtain a signifi-
cant share of the spectrum. I extend the standard independent pri-
vate value model to capture this type of information asymmetry and
retrieve unique equilibrium predictions in undominated strategies. In
a sealed bid format, the uninformed bidder is at a clear disadvantage
and can predominantly only succeed in the auction if the object’s qual-
ity is low. An open auction format can completely level the playing
field, implementing the first best efficient outcome.
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1 Introduction

Information plays a key role in auctions. It is of great importance for partic-
ipants and auction designers alike which is why it has rightfully received a
lot of attention in the literature. Uncertainty and lack of crucial information
can give rise to all kinds of inefficiencies, for example by awarding the prize
to an ”undeserving” participant, i.e. one who does not value it highest, or by
bankrupting the winner because the actual value of the prize was lower than
the price he had to pay. Thus a social planner, who is solely interested in
efficient allocation, must carefully take into account any information held by
potential bidders and also information he might release himself (Schweizer
and Szech, 2017). Participants of an auction, on the other hand, might go to
great lengths to gain and exploit any information advantage they can get.

Designers of the German 5G spectrum auction in 2019 where surely aware of
this when a potential market entrant applied for the auction. 1&1 Drillisch,
subsidiary of US service provider United Internet, was looking to enter the
market for the next generation of mobile internet providers, previously shared
between three incumbents. One can imagine that 1&1 Drillisch saw itself in
a peculiar situation going into the auction. Surely, the long-time incum-
bents had a far better understanding of the German mobile internet market
and could therefore better predict the potential value of spectrum shares.
Nonetheless, 1&1 Drillisch entered the auction determined, sending a clear
signal to the incumbents by submitting relatively high initial bids (Reuters,
2019b). After intense bidding in 497 rounds over the course of 52 days, the
auction raised 6.55 Billion Euros in total (Bundesnetzagentur, 2019). The
achieved revenue was a lot higher than many experts expected (Financial
Times, 2019) and there is reason to believe that the presence of a potential
market entrant led to more aggressive bidding from the 3 incumbents, who
tried to keep the status quo. In the end, 1&1 Drillisch was successful in the
auction, acquiring 70 out of a total 420MHz of spectrum for 1.07 billion euros
which saw their stock prices soaring in the aftermath (Reuters, 2019c).

The 2019 German 5G Auction was held as a multi-object auction, with 41
shares of the spectrum being auctioned simultaneously. The designers opted
for an open ascending format which, according to my results, may have lev-
eled the playing field and helped 1&1 Drillisch to enter the market. Yet, dur-
ing the course of the auction and also immediately after, voices from Telecom-
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munication providers spoke very negatively about the outcome, claiming the
the high prices for spectrum represent a big setback in their development,
with Vodafone Germany’s CEO describing the outcome as “catastrophic”
and market leader Deutsche Telekom’s Germany chief Dirk Woessner stating
“the auction leaves a bitter aftertaste” (Reuters, 2019a). So it is yet to be
seen, if the new market entrant will be able to enjoy his prize.

I introduce a model which extends the standard private value model to cap-
ture the information disadvantage a market entrant might face. Bidders’
valuations depend on their independent private signal and the object’s qual-
ity (one can think of this as a state of the world). In contrast to previous
approaches in the literature, the identity of the strongest bidder (i.e. the
bidder with the highest valuation for the prize) depends on both the private
signals and the state of the world. Information on the object’s quality is
extremely asymmetric. To one bidder, think of a market entrant, the ob-
ject’s quality and therefore his expected utility of obtaining it is unknown
and he has to rely on a public signal. All other bidders, the incumbents,
are perfectly informed about the object’s quality and their valuation for the
object. For simplicity, I focus on single object auctions but the dynamics of
the equilibria can also give insights on multi-object formats.

I analyze this setup for the second price auction and for the strategically
related English auction. This means that incumbents have a weakly dom-
inant strategy, which lets me focus on the entrant’s best response. These
auction formats are particularly interesting, since the incumbents have only
very limited ability to exploit their information advantage further. Neverthe-
less, I find that the entrant faces a considerable disadvantage in the sealed-bid
SPA, where there is a high chance he will not compete for the high quality
object, i.e. bidding in a way that he can only win if the object is of low
quality. Also, two types of inefficiencies arise, including an ex-post Winners’
Curse.

Previous work has shown that open auction formats can help less informed
bidders (e.g. Compte and Jehiel (2007)), as they can infer valuable informa-
tion from more informed bidders’ behavior and this is exactly what I find.
The English Auction erases the information disadvantage completely when
there are at least two incumbents present, implementing an efficient allo-
cation with certainty. This suggests that, from the perspective of a social
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planner, an open auction format is the superior choice when dealing with
such a a market entry situation, negating the information asymmetries and
securing an efficient outcome.

1.1 Related Literature

For decades, the independent private values model (IPV) has served as a work
horse model when studying auctions, featured in virtually every book about
auction theory and competitive bidding (e.g. Krishna (2009) or Klemperer
(2004)). I extend the model by introducing different states of the world and
drawing valuations independently for each state. Additionally, I vary bid-
ders’ information about which state of the world they’re in.

In contrast to the private value models stands the common value approach.
Historically this model was often used to study drilling rights auctions for oil
and gas (Milgrom and Weber, 1982a). The assumption is that the value of
the prize is the same for all bidders but every bidder has a different estima-
tions of this value. These types of auctions have regularly led to the famous
”Winner’s Curse”. Winning such an auction often means the bidder had the
most optimistic estimation of the prize’s value which was therefore likely to
be lower than his estimate, resulting in over-payment. This phenomenon has
been widely observed and replicated in the experimental literature (see e.g.
Kagel and Levin (2002) for an extended survey on the Winner’s Curse). The
model in this paper also features a form of ex-post Winner’s Curse as the
uninformed bidder ends up overpaying for the prize with positive probability.

In the pure common value setting, information is key. Milgrom and Weber
(1982a) show that if a bidder has strictly better information than another,
the uninformed bidder’s expected profit is zero in equilibrium. Wilson (1967)
studies a related model where two bidders compete for a prize in a first price
auction. One party knows the value with certainty while the other party does
not. This way, the uninformed bidder inevitably has to randomize his bid-
ding which leads to an equilibrium with quite different characteristics than
the equilibria described in this paper. Also, the nature of the first price auc-
tion poses different incentives to the informed player, as he can choose how
much profit he ”shoots for”. In this paper, the second price auction lets me
simplify the informed bidders strategy and focus on the uninformed bidders
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best response.

One common approach to combine uncertainty about object’s quality and
private values is to separate every bidders valuation of the object into a com-
mon component, whose realization is unknown to all bidders, and a private
component. For example, bidders valuation can be of the form Vi = piv (or
sometimes Vi = v + pi) where pi is a private signal and every bidder might
have different estimates about the common component v (Wilson, 1992). A
key implication of these models, is that the bidder with the highest private
component has the highest valuation for the object, independent of the real-
ization of the common component, meaning a social planner could allocate
the object efficiently without knowing the value of v. In my model the ef-
ficient allocation (generally) depends on the objects quality. This situation
might occur in the real world. One can imagine that in a spectrum auction,
where future demand can be seen as a random variable, some firms might be
the most effective provider when demand is relatively small, whereas there
might be a different firm which is best equipped to scale up its operation if
demand turns out to be very large.

This paper is also related to the literature of the “Market for Lemons”, first
introduced by Akerlof (1978), where it is shown that uncertainty about a
product’s quality can drive high quality products out of the market, leaving
only “Lemons” (a term used for a sub-par used car) to be sold. This concept
of adverse selection has been extended to auction theory. Lauermann and
Wolinsky (2017), for example, show with a model where the auctioneer can
invite bidders conditional on the object’s quality, that competition softens
and the auction fails to aggregate information resulting in a non-competitive
price.

To my best knowledge, none of the existing models cover the type of value
and information structure I propose nor contain it as a special case.

The rest of this paper is structured as follows: Section 2 describes the Model
with all its assumptions, sections 3 and 4 present the equilibria of the sealed
bid Second-Price Auction and the English Auction, respectively. A discus-
sion of the results and its implications is provided in section 5 and section 6
concludes.
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2 Model

An indivisible object or prize is sold in an auction. There are n bidders
competing for the object. Let q ∈ {L,H} denote the object’s quality, which
can be either low or high. Bidders have i.i.d. valuations for both types of
the object, denoted vL and vH . These valuations are drawn according to
continuous CDFs FL(vL) and density functions fL(vL) with support [vL, vL],
as well as FH(vH) and fH(vH) with support [vH , vH ], respectively. I assume
that vL ≤ vH to ensure that the high quality object is always valued at
least as high as the low quality object. I also assume that the density of the
first-order statistic, denoted by f q

1:n−1(vq) is continuous and well-defined for
q ∈ {L,H}. The distribution functions as well as the information structure
are common knowledge. Bidders are risk-neutral, so their utility for winning
the auction is simply their respective valuation, depending on q, minus the
price they have to pay.

n−1 bidders, the incumbents, are informed about the object’s quality before
the bidding phase, so they are certain of their valuation for the prize (one can
also think of incumbents drawing only the relevant valuation after observing
q). One bidder, the entrant (I will also use “she” to denote the entrant),
only observes a public signal pH ∈ (0, 1), indicating the probability that the
object is of high quality. pH can also be seen as her prior belief that q = H.

I am interested in a full strategic analysis of the described game. The solution
concept used is Bayes-Nash Equilibrium (BNE) in undominated strategies.
A strategy profile consist of a strategy for each bidder. A strategy profile
constitutes a BNE, if every strategy in that profile is a best response to all
other strategies of that same profile, i.e. there is no strategy that yields a
higher expected payoff given all other bidders’ strategies.

All incumbents have a (weakly) dominant strategy in both the SPA and the
English Auction, namely bidding truthfully, as shown in the seminal paper
by Vickrey (1961). So in that sense, the informed bidders can not profitably
alter their strategies to exploit their information advantage. I restrict my
analysis to equlibria in which incumbents play this dominant strategy. The
entrant has no such strategy, thus she must play a best response to the in-
cumbents’ strategies.
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3 Sealed-bid Second Price Auction

This section provides the results of the sealed-bid second price auction (SPA),
which is conducted as follows: First, all bidders draw their valuations and
incumbents observe q. Then, each bidder privately submits a bid to the
auctioneer (e.g. in a sealed envelope) who collects all bids and allocates the
object to the highest bidder. The winner pays the value of the second highest
bid, all other bidders pay nothing. Due to my assumptions, ties will occur
with zero probability in equilibrium and are therefore not considered in my
analysis.

I restrict my analysis to equilibria, in which incumbents play their weakly
dominant strategy of bidding their (relevant) valuation. Let vL and vH be the
entrant’s valuation for the low and high quality object, respectively. Given
the incumbents’ strategy, bids in the interval [0, vL) for the entrant are strictly
dominated (in expectation) by a bid of vL. By bidding vL she forfeits the
chance to win if the object is of high quality (since she will be outbid by all
informed bidders) but plays her optimal strategy if q = L. Similarly, bids in
the interval (vL, vH ] are dominated by vL since they never win the object if
q = H and can never lead to a better outcome that vL when the object is of
low quality. Bids in the open intervals (vH , vH) and (vH ,∞) are dominated
by vH : They lead to identical outcomes when the object is of low quality but
vH is strictly dominating in expectation when the object is of high quality.

The only undominated bids are therefore vL and vH . I define a cutoff function
Gn(vL, vH) as follows:

Gn(vL, vH) := pH

∫ vH

vH

fH
1:(n−1)(v)(vH − v)dv − (1− pH)

∫ vL

vL

fL
1:(n−1)(v)(v − vL)dv

where f q
1:(n−1)(v) = (n − 1)F n−2(v)f(v) for q ∈ {L,H} denotes the density

of the first order statistic.

Gn(vL, vH) represents a condition for the entrant’s valuations. If the value of
the function is greater than zero, her valuations are “high enough” and it is
optimal for her to bid for the high quality object, i.e. submit a bid of vH . If
not, it is optimal for her to bid vL, forfeiting her chance to win the auction if
the object is of high quality but bidding optimally when it’s of low quality.
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Let b : [vL, vL]× [vH , vH ]→ R denote an entrant’s bidding function.

Proposition 1. The bidding function

b(vL, vH) =

{
vH if Gn(vL, vH) > 0

vL otherwise

for the entrant, together with the incumbents’ dominant strategy of bidding
truthfully constitute a BNE in undominated strategies.

For the formal proof, see appendix section A.1 which also shows that, apart
from valuations where Gn(vL, vH) = 0, this b(vL, vH) is the entrant’s unique
best response to the incumbents’ dominant strategy.

So if the uninformed bidders’ valuations are ”high enough” and Gn(vL, vH) >
0 she will bid her high valuation, knowing that when the object is of low qual-
ity she will pay the incumbents’ highest vL, which might still yield a positive
payoff. Otherwise she will bid her low valuation, forfeiting her chance to win
the high quality object.

Lemma 2. b(vL, vH) is non-decreasing in both arguments. Additionally,
∀vL ∈ (vL, vL), vH ∈ (vH , vH):

b(vL, vH) = vH

and

b(vL, vH) = vL.

Proof: The statements follow directly from the shape of Gn(vL, vH) which
is increasing in both arguments. To see this, assume that vH , v

′
H ∈ [vH , vH ]

with v′H > vH . Then

Gn(vL, v
′
H) = pH

∫ v′H

vH

fH
1:(n−1)(v)(v′H − v)dv − (1− pH)

∫ vL

vL

fL
1:(n−1)(v)(v − vL)dv

> Gn(vL, vH) + pH

∫ v′H

vH

fH
1:(n−1)(v)(v′H − v)dv

> Gn(vL, vH)

8



This applies analogously to vL.
When vL = vL the second term is zero and the first term is strictly positive
as long as vH > vH , yielding a strictly positive sum and therefore b = vH .
Similarly, when vH = vH the first term is zero and the second term is strictly
negative if vL is in the interior of its interval.
�

So both a higher valuation for the low quality object and the high qual-
ity object increase the probability of bidding the high value. Interestingly, a
very high value for the high quality object can generally not ensure a bid of
vH , while a there is always a high enough vL that does (also compare Figure
1).

Another thing to point out is that Gn(vL, vH) does not depend on the ab-
solute effect of the object’s quality on bidders’ valuations. In other words,
the distance between the two intervals, given by vH − vL, does not affect the
entrant’s strategy. This is due to the fact that if she bids vH and quality
is low, she is guaranteed a prize in the lower interval [vL, vL] (since all in-
cumbents will place their bids there), thus rendering the distance between
intervals irrelevant.

The condition (Gn > 0) that the entrant’s valuation have to fulfill in or-
der to bid for the high quality object strongly depends on n. Generally,
the domain for which this condition holds shrinks rapidly when n increases
(Compare Figure 1). However, the continuity of Gn together with the border
case Gn(vL, vH) > 0 (for all vH 6= vH and N ≥ 2) ensures that the area of
this domain is always greater than zero. So ex ante, there is always a posi-
tive probability that the entrant bids vH and can win the high quality object.

In equilibrium, 2 types of inefficiencies occur with positive probability. Firstly,
if q = L and b = vH , the uninformed bidder might win the object without
having the highest valuation for it. In that case, she wins the objects at a
price which is higher than her valuation, resulting in negative utility which
can be seen as a form of the Winner’s Curse. Secondly, if q = H and b = vL,
the uninformed bidder might not win the object, even though she does have
the highest valuation for it. The occurrence of these inefficiencies is generally
not symmetric or equally likely, especially when n is larger, as the example
in Figure 1 demonstrates: Even if the uninformed bidder has the highest
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Figure 1: The domain of Gn(vL, vH) > 0 decreases in size when n increases.
The entrant bids vH when her values land in the red area and vL in the blue area.

(v ∈ U [0, 1]× U [2, 3]).

possible valuation for the high quality object, there is a considerable chance
she will still bid vL when n ≥ 3. This suggests, that the second type of
inefficiency is generally more likely to arise (Compare also Table 1).

The auctioneer profits from the first type of inefficiency but loses out on
potential revenue when the second type happens. The biggest impact in
terms of revenue is in the two bidder case. Only there it is possible that
the auctioneer sells the high quality object for a price in the lower interval
[vL, vL]. In general, his expected revenue when compared to a situation with
n informed bidders is higher when q = L but lower when q = H, exactly
because of these inefficiencies.

We will see later, that the open ascending auction eliminates both types
of inefficiencies.

3.1 Example

As an example, let pH = 1
2

and valuations for the object are drawn uni-
formly from [0, 1] and [2, 3] for the low and high quality object, respectively.
In the two bidder case with just one incumbent, the entrant’s behavior in
equilibrium simplifies to:

b =

{
vH if vH + vL > 3

vL otherwise
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In this simple case, the uninformed bidder bids high if the sum of her two
valuations is higher than their expected value (See the left graph in Figure 1).
Table 1 shows all possible outcomes of this auction, along with their ex ante
probabilities of occurrence. So before drawing her valuations, the probability
that the entrant will bid vH is 1

2
. She also wins the auction with probability

1
2
, however with probability 1

12
the price she has to pay is higher than her

valuation. This is the ex post winner’s curse. The other type of inefficiency
also occurs with probability 1

12
, where the incumbent wins the high quality

object without having the highest vH .

Adding more incumbents leads to cutoff functions of the form:

Gn(vL, vH) =
1

2n
·
(

(vH − 2)n − vnL + nvL − (n− 1)
)

The middle and right graph in Figure 1 illustrate the entrant’s bidding func-
tion for n = 3 and 4, respectively. With 3 total bidders, the ex ante proba-
bility that the entrant bids vH is only about 24.8%.

When n = 4 this number further decreases to around 15% and one can
see that for every pair of vL and vH in the interior, there always exists a
N ∈ N so that Gn(vL, vH) is negative for all n > N . This demonstrates how
the incumbent is forced out of the market for the high quality object as the
number of incumbents gets large.

Table 1 further illustrates the occurrence of inefficiencies when increasing
the number of incumbents1. While the total probability of an inefficient
outcome is decreasing in the number of bidders, it does so asymmetrically.
Since the entrant is more and more likely to settle for a chance of winning the
low quality object, the probability of allocating the high quality object ineffi-
ciently is higher than the probability of mis-allocating the low quality object.

4 English Auction

In this section I present the result when applying the model to a standard
open auction format. For this purpose, I model the English Auction in the

1Probabilities for n ≥ 3 were calculated numerically with a maximum error of 10−5.
See appendix section A.2 for details
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b q Entrant wins Efficient Outcome
Probability (in %)

N = 2 N = 3 N = 4

vH

H
Yes Yes 16,67 7,00 3,84
No Yes 8,33 5,40 3,64

L
Yes Yes 16,67 8,24 4,98
Yes No 8,33 4,17 2,50

vL

H
No Yes 16,67 27,93 33,85
No No 8,33 9,67 8,66

L
Yes Yes 8,33 8,43 7,52
No Yes 16,67 29,17 35,00

Table 1: All Auction outcomes with corresponding (unconditional)
probabilities of Example 1.

The column “Efficient Outcome” denotes the case where the object is awarded to
the bidder with the highest valuation for it.

way of Milgrom and Weber (1982b), sometimes called ”button auction” or
Japanese auction: Each bidder presses a button at the start of the auction
and keeps this button pressed as the price increases continuously. A bidder
drops out of the auction by releasing his button, which can be observed by
all bidders. The auction ends when there is only one bidder left pressing
his button. This bidder wins and pays the price at which the second-to-last
bidder released his button.

If we apply this auction format to our model, as long as there are at least
two incumbents, the market entrant is no longer at a disadvantage (assuming
incumbents play their dominating strategy). Imagine being the uninformed
bidder in such a situation. Certainly you can keep your button pressed un-
til the price reaches vL. If at least one incumbent drops out before vL you
know the object is of low quality and dropping out at vL is optimal. If vL is
reached without anyone dropping out, you simply stay in the auction. If an
incumbent drops out before vL is reached, you also know the object is of low
quality and you should drop out immediately to not win the object at a price
higher than your valuation. Generally this should always be possible, since
there are at least 2 incumbents in the auction and the probability of them
dropping out simultaneously is zero. If vL is reached and all bidders are still
pressing the button, you can be sure that the object is of high quality and
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stay in the auction until vH is reached.

This strategy yields the efficient allocation with certainty. The entrant is
no longer at risk of winning the low quality object at a price above his val-
uation and also always wins the object if he has the highest valuation for it.
Although this does not necessarily translate into a higher expected revenue
for the auctioneer, as he profits from one type of inefficiency in the sealed
bid format but suffers from the other.

When there is only one incumbent in the auction, the result is effectively
the same as in the sealed bid case: First, the market entrant stays in the
auction until vL is reached and drops out at that price if G2(vL, vH) < 0.
Otherwise he stays in the auction until vH .

To see this, let’s analyze the situation for the entrant when vL is reached. At
this point, there are 2 possible scenarios: Either q = H, or q = L and the
incumbent’s valuation is higher than the entrant’s. The entrant updates her
belief that q = H, p

′
H accordingly:

p
′

H =
pH

pH + (1− pH)(1− FL(vL)

Then she has to compare the utility from dropping out, which is zero, to the
expected utility from staying in the auction, which is

(1− p
′

H) · E[vL − ṽL|ṽL > vL] + p
′

H · FH(vH) · E[vH − ṽH |ṽH < vH ]

This expression is greater than zero if and only if G2(vL, vH) > 0.2

5 Discussion

This sections provides comparisons with existing results and covers possible
extensions to the model.

One of the motivating assumption about the model was that the identity

2When staying in the auction until vH is more profitable than dropping out when the
price is at vL, it must clearly also be more profitably at any other point in (vL, vL). Once
vL is reached, q can only be H and staying until vH is optimal.
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of the strongest bidder should depend on the object’s quality. In this paper,
this is reflected by the fact that the two valuations vL and vH are drawn
independently, which is an assumption that might be seen as unrealistic. It
is certainly more intuitive that a bidder with very high valuation for the
high quality object would also tendencially have a high valuation for the
low quality type and of course the model can be extended to include some
correlation between the two values. I argue, however, that the results and
observations drawn from this simple model with independent draws give a
good indications of how equilibria with such extensions might look like.

Milgrom and Weber (1982a) showed, with very little additional assumptions,
that in sealed-bid, pure common value auction, a less informed bidders ex-
pected profit is always zero. In other words, such a bidder is ex ante indif-
ferent between attending the auction or staying out. In the model at hand,
while she still faces a severe disadvantage, the uninformed bidders expected
profit is always positive.

Another point I want to make is that the entrant’s access to the high quality
object is highly restricted even under risk-neutrality. Extending the model
by adding risk-aversion, which has been of great interest as well in the litera-
ture (starting with works of Maskin and Riley (1984) and Matthews (1987)),
leads to an even stronger restriction. Bidding for the high quality object al-
ways comes with the risk of overpayment if the object’s quality is low, while
the entrant can ensure a non-negative payoff (as well as strictly positive in
expectation) by bidding his low valuation.

A natural extension of the model would be to increase the number of states
of the world, i.e. q ∈ {q1, q2, ...}, with bidders drawing values for each q. One
can easily show that, as long as the corresponding intervals remain disjoint,
equilibria in this extended model have a similar structure. In equilibrium,
the entrant’s bid is exactly one of his drawn valuations. As the number of
participants increases, the entrant is more likely to bid for the objects of
lower quality.

What happens when there is more than one market entrant? Although I
was not able to proof formally, I strongly suspect that the symmetric equi-
librium has a similar structure, with the cutoff function being even more
restrictive. One major difference with more entrants, is that the distance be-
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tween intervals enters the equation since a high bid does no longer guarantee
a price in the low interval if q = L. Nevertheless, since market entrants are a
relatively rare occurrence in a lot of industries, I believe the model with just
one entrant is still worth studying.

6 Conclusion

In this paper, I study an auction in an independent values setting in which one
participant has less information about the object’s quality than all the other
participants. I characterize equilibria for the sealed-bid Second Price Auction
and the English Auction. In the former, the uninformed bidder bids for the
high quality object only if his private valuations are relatively high. As the
number of participants increases, he restricts his attention more on the low
quality object, essentially excluding him from the market for the high quality
object. This leads to two types of inefficiencies: The uninformed bidder might
win a low quality object at a price above his valuation or he might not win
a high quality object even though his value for it is highest. In equilibrium,
both inefficiencies arise with positive probability. An open ascending auction
eliminates these inefficiencies at no cost, leading to an identical outcome as
a setup where every bidder is perfectly informed and awarding the object to
the bidder with the highest valuation for it. This suggests that open auction
formats are superior in negating information asymmetries and therefore favor
less informed bidders when compared to sealed-bid formats.
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A Appendix

A.1 Proof of Proposition 1

Since we already established that any bid other than vL and vH is dominated,
it suffices to compare the expected revenue of the two potential bids, given
that the informed bidders bid truthfully.
Bidding vL yields

E[u(vL)] = (1− pH)P{vL > vL(1:n−1)} · E[vL − vL(1:n−1)|vL > vL(1:n−1)]

= (1− pH)(FL
1:n−1(vL) ·

∫ vL

vL

(vL − v)fL
1:n−1(v)

FL
1:n−1(vL)

dv

= (1− pH)

∫ vL

vL

fL
1:n−1(v)(vL − v)dv

while a bid of vH gives us

E[u(vH)] = (1− pH)E[vL − vL(1:n−1)] +

+ pH (P{vH > vH(1:n−1)} · E[vH − vH(1:n−1)|vH > vH(1:n−1)]

= (1− pH)

∫ vL

vL

fL
1:n−1(v)(vL − v)dv + pH

∫ vH

vH

fH
1:(n−1)(v)(vH − v)dv

From this I can calculate when bidding vH is more profitable than a bid of
vL

E[u(vH)] ≥ E[u(vL)] ⇐⇒

pH

∫ vH

vH

fH
1:(n−1)(v)(vH − v)dv ≥ (1− pH)

∫ vL

vL

fL
1:n−1(v)(v − vL)dv ⇐⇒

Gn(vH , vL) ≥ 0

�

When Gn(vL, vH) = 0 is the entrant indifferent between bidding vL or vH . So
only bidding functions that map b(vL, vH) to vL when Gn(vL, vH) < 0, to vH
when Gn(vL, vH) > 0, and to either of those two values when Gn(vL, vH) = 0
are best response functions to the incumbents’ strategy.
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A.2 Calculations for Table 1

To efficiently calculate the respective probabilities in Table 1, I first perform
a simple transformation. Remember that the cutoff function has the form

Gn(vL, vH) =
1

2n
·
(

(vH − 2)n − vnL + nvL − (n− 1)
)

when vL ∼ U [0, 1], vH ∼ U [2, 3] and pH = 1
2
.

So the function fn(vL) = (vL − nvL + (n − 1))
1
n maps all vL ∈ [0, 1] to a

v′H := f(vL) with G(vL, v
′
H + 2) = 0. Using this function I can calculate

P (Entrant bids vL) =

∫ 1

0

min(fn(x), 1)dx

which is just the size of the blue areas in Figure 1 relative to the total area.
I can further define the conditional distribution functions of vL and vH , given
that the entrant bids vL or vH :

FL(vL|b = vL) =

∫ vL

0

min(fn(x), 1)

P (Entrant bids vL)
dx

FL(vL|b = vH) =

∫ vL

0

max(1− fn(x), 0)

P (Entrant bids vH)
dx

FH(vH |b = vL) =

∫ 1

0

min(vH , fn(x))

P (Entrant bids vL)
dx

FH(vH |b = vH) =

∫ 1

0

max(vH − fn(x), 0)

P (Entrant bids vH)
dx

With these conditional distribution functions I can now calculate the proba-
bilities, with which the entrant’s valuation is higher or lower than the highest
incumbent’s, given her own bid. Let q1, q2 ∈ {L,H}. Then

P (vq1 < vq1(1:n−1)|b = vq2) =

∫ 1

0

(n− 1)xn−2Fq1(vq1|b = vq2)dx

where vq1(1:n−1) denotes the highest of the n − 1 incumbents’ valuations for

object with quality q1 and the term (n− 1)xn−2 refers to the density of the
first order statistic of the incumbents’ valuations.
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The entries in the table are then calculated by simply multiplying the respec-
tive probabilities, e.g. the probability that the entrant bids vH , the object’s
quality is H and the entrant has the highest valuation for the object is:
P (Entrant bids vH) · 1

2
· P (vH > vH(1:n−1)|b = vH)
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