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Abstract

We study a symmetric independent private values auction model where the revenue-maximizing seller
faces a cost cn of attracting n bidders to the auction. If the distribution of valuations possesses an increasing
failure rate (IFR), the seller overinvests in attracting bidders compared to the social optimum. Conversely,
if the distribution is DFR, the seller underinvests compared to the social optimum. If the distribution of
valuations becomes more dispersed, both, a revenue- and a welfare-maximizing seller, attract more bidders.
© 2011 Elsevier Inc. All rights reserved.

JEL classification: D44

Keywords: Auctions; Advertising; Order statistics

1. Introduction

We analyze a symmetric independent private values auction model: a revenue-maximizing
seller faces a cost cn of attracting n bidders. These costs can be thought of as advertising costs –
or as costs of making bidders familiar with the object to be auctioned. We mainly consider the
question: How many bidders does the seller choose to attract compared to the socially optimal
number?

✩ I would like to thank Martin Hellwig, Johannes Koenen, Benny Moldovanu, and Patrick Schmitz, as well as the
associate editor and two referees. The paper first circulated under the title “Information Release in Second Price
Auctions”.

E-mail address: nszech@uni-bonn.de.
0022-0531/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jet.2011.10.010

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jet.2011.10.010
http://www.elsevier.com/locate/jet
mailto:nszech@uni-bonn.de
http://dx.doi.org/10.1016/j.jet.2011.10.010


N. Szech / Journal of Economic Theory 146 (2011) 2596–2607 2597
Our main result is the following: If the distribution of valuations has an increasing failure rate
(IFR), the seller overadvertises the auction. Conversely, with a decreasing failure rate (DFR),
the seller underadvertises. The difference in investment behavior stems from the fact that in
the IFR case bidders’ aggregate rents, i.e., the difference between the two highest valuations,
decrease in the number of bidders. Conversely, they increase in the DFR case. Therefore, the
bidders’ aggregate rents determine whether the seller over- or underadvertises when maximizing
revenues, compared to the social optimum.

We first develop the results for standard auctions, e.g., a second price auction without a re-
serve price. Then we demonstrate that they generalize to optimal auctions with minor caveats.
Moreover, we show that in an optimal auction the seller advertises to fewer bidders than in a
standard auction. The reason for this is that a reserve price is more effective with fewer bidders.
Thus, smaller numbers of bidders are comparatively more profitable in an optimal auction than in
a standard auction without reserve. Finally, we show that, under a more dispersed distribution of
valuations, both revenue- and welfare-maximizing sellers increase their advertising efforts. Tech-
nically, we rely on tools from reliability theory which allow us to derive unambiguous results for
broad classes of probability distributions.1

The advertising literature frequently assumes costs of attracting prospective buyers.2 In the
auction literature, such costs have received surprisingly little attention despite the fact that they
are often implicitly assumed: For example, consider Bulow and Klemperer’s [4] result that
attracting another bidder is more profitable than setting an optimal reserve price. In their com-
parison, they implicitly assume that it is costly to set the optimal reserve or to attract one more
bidder: If there were no costs associated with attracting more bidders, the comparison would be
trivial.

Our results are related to models in which bidders strategically decide about entry to an
auction such as in French and McCormick [7], McAfee and McMillan [11], and Levin and
Smith [9].3 In this literature, it is assumed that the bidders (and not the seller) face costs of
entering the auction. Both, McAfee and McMillan [11], and Levin and Smith [9], consider a
revenue-maximizing seller who can influence the number of entering bidders, respectively, by
entry fees or by directly restricting the pool of entrants. Both papers find that the seller’s in-
centives coincide with social incentives. The reason is that the bidders in these models decide
about entering the auction before they learn their valuations. Hence bidders end up earning zero
expected profits.4 In line with our findings, the monotonicity of the bidders’ aggregate rents is
crucial: by the fact that the bidders’ aggregate rents are constant (zero), the revenue-maximizing
seller’s interests are aligned with those of a welfare-maximizer. This coincidential alignment of
incentives stands in marked contrast to the findings in our model.

Our technical results also contribute to a recent literature which tries to develop a bet-
ter understanding of Myerson’s [13] regularity condition of increasing virtual valuations.5

We provide two results in this context: First, we show that increasing virtual valuations are

1 See, e.g., Barlow and Proschan [2]. For previous applications of reliability theory to the auction literature, see Li [10]
and Moldovanu, Sela and Shi [12], and the references therein.

2 See, e.g., Bagwell [1].
3 See Bergemann and Välimäki [3] for a recent survey which covers this literature.
4 In McAfee and McMillan [11], the seller extracts all rents via ex-ante entry fees. Levin and Smith consider a sym-

metric equilibrium with mixing over the entry decision. There, bidders set their entry probabilities such that they all earn
zero expected payoffs.

5 See Ewerhart [6] and the references therein.
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linked to monotonicity in n of the sequence of increments of expected second order statistics
E[X2:n+1 − X2:n]. This connection parallels the connection between the IFR condition and
monotonicity of E[X1:n − X2:n]. Notably, increasing virtual valuations are in a sense a tight
condition for concavity of expected second order statistics.6 Our proof relies on a recent obser-
vation by Ewerhart [6]: A distribution F with density f possessing increasing virtual valuations
is equivalent to F possessing an increasing zoom rate

zF (x) = f (x)

(1 − F(x))2
.

Second, we find that (strictly) increasing virtual valuations are not sufficient for our purposes and
for optimal auctions when considering distributions of valuations with an unbounded support: We
give an example of a distribution with strictly increasing virtual valuations for which no optimal
reserve exists.

The paper proceeds as follows: Section 2 introduces the model and the optimization problems.
Section 3 develops the technical tools needed for our analysis and proves concavity of first and
second order statistics. Section 4 contains our results on standard auctions: We compare social
and revenue-maximizing incentives for inviting bidders and study the influence of dispersion in
the distribution of valuations. Section 5 extends our analysis to revenue-maximizing auctions.
Section 6 concludes. All proofs are in Appendix A.

2. The model

We consider a standard symmetric independent private values auction model with a seller who
sells an indivisible object to a group of bidders. The bidders’ valuations Xi are independent draws
from a distribution F . We denote by Xk:n the kth largest of the random variables X1, . . . ,Xn and
assume that E[Xi] < ∞.7 There is an infinite pool of potential bidders who are initially unaware
of the auction. The seller has to invest cn to make n bidders aware of the auction. Once a bidder
i becomes aware of the auction, he privately learns his valuation Xi for the object for sale. The
seller values the object at zero. The object is auctioned off in a sealed-bid second price auction
with reserve price r . We assume throughout that bidders adhere to their weakly dominant strategy
of bidding their valuation whenever it is weakly greater than the reserve price.

We assume that the cost sequence cn is weakly convex and strictly increasing for n � 1.
Moreover, we assume c0 = c1 = 0, i.e., the seller can attract one bidder for free.8 We assume that
the distribution F possesses a continuous density f which is strictly positive over the support S

of F where S = [0, s) for some s ∈ (0,∞].9 We assume that F fulfills Myerson [13]’s regularity
condition that the virtual valuation function VF ,

VF (x) = x − 1 − F(x)

f (x)
,

is strictly increasing in x. Moreover, we assume the following:

6 This concavity is important in our analysis since it guarantees that the seller’s maximization problem is well behaved.
7 The latter assumption ensures that all order statistics of F have finite expectation: E[Xk:n] < nE[X1] < ∞.
8 As will become clear below, this assumption allows us to avoid a separate discussion of the case n = 1. We can easily

relax it to the assumption that costs grow slowly enough such that the relevant range of n is above 1.
9 These regularity assumptions are made to avoid technicalities and can easily be relaxed, e.g., to densities which are

zero on some intervals.
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A1 There exists an r∗ < ∞ such that VF (r∗) = 0.
A2 The zoom rate ZF defined by

ZF (x) = f (x)

(1 − F(x))2

converges to ∞ as x gets large.

Assumptions A1 and A2 lead to a mild but non-trivial strengthening of the increasing virtual
valuations condition. They ensure that F is not only Myerson regular but also not on the border
of Myerson regularity. A1 is equivalent to assuming the existence of an optimal reserve price.10

Since VF (0) = − 1
f (0)

� 0, increasing virtual valuations together with A1 guarantee that virtual
valuations increase strongly enough to become positive from some point on. For distributions
on R

+, increasing virtual valuations alone are not sufficient to guarantee this.11 Assumption A2
is related to the increasing virtual valuations condition as stated by Ewerhart [6]: A distribution F

has an increasing zoom rate ZF iff VF is increasing.12 In this sense, A2 is – just like A1 –
an assumption of sufficient growth of virtual valuations.

Our main goal is to compare the optimal choice of n under three different objectives: a) Maxi-
mizing social welfare in a second price auction with reserve price 0,13 b) maximizing the seller’s
revenue in a second price auction with reserve price 0 and c) maximizing revenue in a second
price auction with reserve price chosen by the seller. The decision problem a) of a welfare-
maximizing seller is given by

max
n

E[X1:n] − cn,

i.e., the seller maximizes the valuation of the winning bidder minus the invitation costs. In the
following, we denote by nw a solution to this maximization problem.

The decision problem b) of a revenue-maximizing seller who sets a reserve price of zero is
given by

max
n

E[X2:n] − cn,

since the second-highest valuation is the price paid by the winning bidder. Denote by np a solu-
tion to this optimization problem.

Finally, the decision problem c) of a revenue-maximizing seller who sets the optimal reserve
price r∗ is given by

max
n

on − cn where on = E
[
X2:n1{X2:n�r∗} + r∗1{X1:n�r∗>X2:n}

]
,

since the seller’s revenue is then given by r∗ if only one bidder has a valuation above r∗ and
by the second-highest valuation if at least two bidders have a valuation above r∗. As shown by
Myerson [13] the revenue-optimal reserve price is the solution of

10 See, e.g., Krishna [8].
11 For an example consider the distribution function F(x) =

√
1+x2−1√

1+x2
on R

+. This distribution possesses strictly

increasing virtual valuations yet any finite reserve price is dominated by all larger reserve prices.
12 For a quick verification, note that both conditions correspond to the same first order condition, 2f (x)2 + (1 −
F(x))f ′(x) > 0. Ewerhart [6] shows the equivalence under considerably weaker regularity conditions on f .
13 Setting the reserve price to zero is obviously the welfare-maximizing choice.
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r∗ = 1 − F(r∗)
f (r∗)

.

A solution exists by Assumption A1 and is unique since virtual valuations are increasing. As
shown by Myerson [13], on can also be written as

on = E
[
max

(
VF (X1:n),0

)]
.

In the following sections we study the ranking of the numbers of bidders attracted to the
auction, nw , np and no, under different assumptions on F . If F is common knowledge and the
bidders are aware of the revenue-maximizing seller’s choice of n, maximization problem b) is
equivalent to the corresponding problems for all standard auctions by the revenue-equivalence
theorem. Likewise, maximization problem c) is equivalent to the corresponding problem for all
revenue-maximizing mechanisms. Common knowledge of n can arise for example if the bidders
can observe n during the auction, if the seller can credibly announce n, or if the bidders can infer
the seller’s choice of n from his optimization problem.

Accordingly, if n is observable, the welfare-maximization problem a) is equivalent to the
problem of a revenue-maximizing seller who charges entry fees before the bidders observe their
valuations. The problem c) of maximizing on − cn is equivalent to the problem of a seller who
charges an entry fee which the bidders pay after they have observed their valuations.

3. Technical prerequisites

The following two technical observations form the basis of our analysis: First, extremal order
statistics are easy to control and, second, many interesting quantities can be expressed as extremal
order statistics. The next lemma establishes the first of these observations.

Lemma 1. Let X1,X2, . . . be the sequence of valuations introduced above.

(i) Let h be a weakly increasing, non-negative function with E[h(X1)] < ∞ and for which
h(X1) is not almost surely constant. Then E[h(X1:n)] is a strictly increasing and strictly
concave sequence. Moreover, if limx→s h(x) = ∞, then limn→∞ E[h(X1:n)] = ∞ where, as
before, s denotes the supremum of the support of the Xi .

(ii) Let h be a weakly decreasing, non-negative function with E[h(X1)] < ∞ and for which
h(X1) is not almost surely constant. Then E[h(X1:n)] is a strictly decreasing and strictly
convex sequence. Moreover, if limx→s h(x) = 0, then limn→∞ E[h(X1:n)] = 0.

The idea behind Lemma 1 is that for an increasing function h the random variable h(X1:n) is
the first order statistic of the random variables (Yi)i = (h(Xi))i while for a decreasing function h

the random variable h(X1:n) is the lowest order statistic of the random variables (Yi)i = (h(Xi))i .
From the lemma, we can immediately conclude that E[X1:n] and on are increasing and con-

cave sequences by setting h(x) = x and h(x) = max(VF (x),0), respectively: Both choices of h

are increasing. Our first main result shows that under increasing virtual valuations the sequence
E[X2:n] is concave as well. Moreover, it shows that the assumption of increasing virtual valua-
tions is, in a sense, a tight condition for the concavity of E[X2:n].

Lemma 2. It holds that

E[X2:n+1 − X2:n] = E
[
h(X1:n)

]
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where

h(x) = (1 − F(x))2

f (x)
.

Accordingly, under our assumptions on F , the sequence E[X2:n] is strictly concave and its in-
crements go to zero as n increases.

Note that the crucial observation here is not that we can rewrite E[X2:n+1 − X2:n] in terms
of X1:n. Rather, it is that n is independent of the function h which makes the further analysis
possible: Provided that h is monotone, we can now analyze E[X2:n+1 − X2:n] as a sequence of
extremal order statistics. Moreover, recall that strictly increasing virtual valuations are equivalent
to a strictly increasing zoom rate ZF and accordingly equivalent to a strictly decreasing func-
tion h in Lemma 2. The strict concavity of E[X2:n] is thus a consequence of the increasing virtual
valuations condition while the fact that the increments go to zero follows from Assumption A2.

From these concavity results we can conclude that our maximization problems are sufficiently
well behaved:

Corollary 1.

(i) If nw maximizes E[X1:n] − cn, then nw + 2 does not maximize E[X1:n] − cn.
(ii) If np maximizes E[X2:n] − cn, then np < ∞ and np + 2 does not maximize E[X2:n] − cn.

The corollary shows that maximizers are almost unique14 and that – due to the finiteness
of np – one can always meaningfully compare np to nw . In Section 5 we prove that no � np

which settles the corresponding question for optimal auctions.
Conversely, distributions F which exhibit strictly decreasing virtual valuations possess a

strictly convex sequence E[X2:n] provided that E[X2:n] is finite.15 This shows that the increasing
virtual valuations condition is in a sense a tight condition for concavity of second order statistics.
This appears to be a novel observation.

4. Standard auctions

In this section, we compare the number of bidders attracted by a revenue-maximizing seller
in a standard auction, np , to the socially optimal number of bidders nw . Furthermore, we show
that more bidders get attracted for more dispersed distributions of valuations.

4.1. Over- and underadvertising

The comparison of the numbers of invited bidders is based on the following lemma.
A revenue-maximizing seller overadvertises if his revenue E[X2:n] reacts more strongly to the
number of bidders than welfare E[X1:n] and vice versa.

14 Due to the discrete character of the problem, uniqueness is generically fulfilled but hard to guarantee – it is easy to
construct examples where two subsequent values of n are optimizers.
15 For examples of such distributions consider the power law distributions with density fγ (x) = (γ − 1)(1 + x)−γ for
γ ∈ (1.5,2).
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Lemma 3.

(i) If E[X1:n − X2:n] is strictly increasing, it holds that np � nw . Hence a revenue-maximizing
seller invites less bidders than in the social optimum.

(ii) If E[X1:n − X2:n] is strictly decreasing, it holds that np � nw . Hence a revenue-maximizing
seller invites more bidders than in the social optimum.

The lemma is based on the following equivalence:

E[X1:n+1 − X2:n+1] > E[X1:n − X2:n] ⇔ E[X1:n+1 − X1:n] > E[X2:n+1 − X2:n]
for all n. Thus, if E[X1:n −X2:n] is increasing, the gains from attracting another bidder are larger
with regard to social welfare than with regard to the seller’s revenue.

We next identify conditions determining the monotonicity behavior of E[X1:n]−E[X2:n]. For
this purpose, we apply the following result from reliability theory16 which is also an immediate
consequence of Lemma 1:

Lemma 4. It holds that

E[X1:n − X2:n] = E
[
h(X1:n)

]
where h(x) = 1 − F(x)

f (x)
.

Accordingly, E[X1:n] − E[X2:n] is strictly increasing if h is increasing and strictly decreasing if
h is decreasing.

The function h in the lemma is the inverse of the failure rate HF of F which is defined by

HF (x) = f (x)

1 − F(x)
.

Distributions for which HF is increasing or decreasing are known, respectively, as IFR and DFR
distributions. Putting these observations together we obtain the following version of Lemma 3,
which is the main result of this section:

Proposition 1.

(i) If F is DFR, it holds that np � nw . Hence the seller underadvertises.
(ii) If F is IFR, it holds that np � nw . Hence the seller overadvertises.

The distinction between IFR and DFR is crucial for the tail behavior of F : The boundary
case between IFR and DFR is the exponential distribution which has a constant failure rate. Here
(and only here), revenue-maximizing and social incentives for attracting bidders are aligned.
IFR distributions form a class of distributions with lighter than exponential tails. For them, the
second order statistic reacts more sensitively to changes in the number of bidders than the first
order statistic. The converse holds for DFR distributions, which are more heavy-tailed than the
exponential distribution.17

16 See, e.g., Barlow and Proschan [2].
17 Examples of IFR distributions are, for instance, Gaussian distributions (restricted to R

+) and many distributions with
finite support such as uniform distributions. The power-law distributions are examples of DFR distributions.
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4.2. Dispersion

Let us now study how nw and np react to changes in the dispersion of the distribution of the
bidders’ valuations. For this purpose, we stress the dependence of nw , np , E[X1:n], and E[X2:n]
on F by writing nF

w , nF
p , E[XF

1:n], and E[XF
2:n].

We compare the optimal advertising levels under different distributions of valuations which
are ordered in the dispersive order.18 A distribution F is said to dominate a distribution G in the
dispersive order if for all 0 � a < b � 1

F−1(b) − F−1(a) � G−1(b) − G−1(a),

i.e., if the distance between any pair of quantiles is larger under F than under G. This order
is well suited for our analysis since it allows us to control the behavior of increments of order
statistics.19

Expectations of order statistics – which are closely related to quantiles – lie further apart under
a more dispersed distribution of valuations, see, e.g., Theorem 3.B.31 of Shaked and Shantiku-
mar [14]. Hence both the revenue-maximizer and the welfare-maximizer attract more bidders the
more dispersed the distribution of the bidders’ valuations is:

Proposition 2. Consider two distributions of valuations fulfilling the assumptions of our model
where F dominates G in the dispersive order. Then the sequences E[XF

1:n] − E[XG
1:n] and

E[XF
2:n] − E[XG

2:n] are increasing in n. Therefore, it holds that nF
w � nG

w and nF
p � nG

p .

4.3. Relaxing Assumptions A1 and A2

All results of this section still hold if we drop Assumptions A1 and A2, require only non-
decreasing virtual valuations and impose additional assumptions on the cost sequence cn to
ensure finiteness of np . For instance, one could assume that cn is strictly convex and that its
increments become arbitrarily large as n goes to infinity. Such a generalization is not possible for
the results of the next section which require the existence of a finite optimal reserve price.

5. Optimal auctions

We now turn to the optimization problem of a revenue-maximizing seller who can set an
optimal reserve price. Recall that we denote the sequence of expected revenues on and the optimal
number of bidders no. Since it holds that E[X2:n] < on < E[X1:n], let us consider the increments
E[X1:n] − on and on − E[X2:n] in the next lemma. The monotonicity behavior of E[X1:n] − on

determines whether over- or underinvestment occurs:

Lemma 5. It holds that

E[X1:n] − on = E
[
h1(X1:n)

]
where h1(x) = min

(
x,

1 − F(x)

f (x)

)

18 See Shaked and Shantikumar [14] for more background.
19 Many weaker dispersion criteria such as F having a larger variance than G would not suffice for this purpose.
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and

on − E[X2:n] = E
[
h2(X1:n)

]
where h2(x) =

(
1 − F(x)

f (x)
− x

)
1{x<r∗}.

By the increasing virtual valuations assumption, the function h2 is decreasing and converges
to zero. Accordingly, we obtain:

Corollary 2. The sequence on − E[X2:n] is decreasing and converges to zero. Hence a revenue-
maximizing seller who sets an optimal reserve advertises less than a revenue-maximizing seller
who cannot set a reserve: no � np .

The comparison of no to the welfare-optimal choice nw is more subtle: If F is DFR, then h1
is increasing so that our underinvestment result also holds for optimal reserve prices:

Corollary 3. If F is DFR, then E[X1:n]− on is increasing. Hence the revenue-maximizing seller
underadvertises: no � nw .

Under IFR, the function h1 is first increasing and then decreasing: It increases linearly until r∗
and then decreases as it equals the inverse failure rate. Since increasing n moves the distribution
of X1:n further into the right tail, the decreasing part of h1 typically dominates for sufficiently
large n. Hence, for large n, the reserve price plays a negligible role. Accordingly, we can expect
to observe overinvestment under IFR distributions from some n on. We expect this effect to
be more pronounced for distributions with a strongly increasing failure rate. We confirm this
intuition with three examples: The exponential distribution which has a constant failure rate, the
uniform distribution which is strongly IFR, and finally two distributions which are IFR but close
to the exponential distribution.

Example 1. If F is the exponential distribution which lies at the boundary between IFR and DFR
behavior, we know that E[X1:n] − E[X2:n] is constant. Since on − E[X2:n] decreases in n, the
remainder E[X1:n]−on must increase. Thus the exponential distribution is no longer a boundary
case – it behaves just like a DFR distribution. Accordingly, we observe underinvestment.

Example 2. If F is the uniform distribution on [0,1], and thus a distribution without tails which is
“strongly” IFR, E[X1:n] − on is decreasing. Here, the decreasing part of h1 is powerful enough
to always dominate the increasing part.20 Accordingly, for the uniform distribution a revenue-
maximizer conducting an optimal auction overinvests.

Example 3. Consider the distribution F with density f (x) = x exp(−x). This distribution has
the same tail behavior as the exponential distribution but it is strictly IFR. Here, the sequence
E[X1:n]−on is increasing in n until n∗ = 8 and decreases from there on: As predicted above, the
IFR behavior takes over at some point. This happens despite the fact that F behaves essentially
like the exponential distribution for large x. The same behavior with n∗ = 3 is observed for
Gaussian distributions restricted to R

+. In these examples, overinvestment occurs if marginal
costs are low enough to guarantee that the relevant range of n is sufficiently high.

20 In this case, h1 is the symmetric function h1 = min(x,1 − x) on [0,1]. Since X1:n has more mass on [0.5,1] than
on [0,0.5] for n > 1, the decreasing part of h1 is dominant for all n.
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6. Conclusion

We have studied a symmetric independent private values auction model in which the revenue-
maximizing seller advertises the auction to the bidders. Our main results show that the failure rate
determines whether the seller over- or underadvertises compared to the social optimum. So far,
we have mainly discussed our results in the context of auction theory. We would like to conclude
by discussing their place in the advertising literature.

In a classical paper, Shapiro [15] demonstrates that a revenue-maximizing monopolist who
cannot price-discriminate and who can sell any number of objects underprovides informative
advertising. The reason is that he cannot extract the whole surplus from the consumers: He does
not fully internalize the gains from advertising and selling to more consumers. In contrast, in
our model, the product of the seller is scarce and the selling price is determined by the auction
mechanism. The seller then underadvertises whenever the expected selling price in the auction
reacts too little to advertising. Yet for many distribution functions, the seller overadvertises as
the selling price reacts more strongly to advertising than the winning bidder’s valuation and
thus welfare. To our knowledge, our study is the first to capture both phenomena, over- and
underadvertising, within one model.

Appendix A. Proofs

We denote the distribution of Xk:n by Fk:n and its density by fk:n. Recall that21

F1:n(x) = F(x)n, f1:n(x) = nFn−1(x)f (x),

F2:n = F(x)n + nFn−1(x)
(
1 − F(x)

)
,

and Fn:n(x) = 1 − (1 − F(x))n.

Proof of Lemma 1. Consider first independent, a.s. non-constant, positive random variables Yi

from a distribution G with finite expectation (but possibly with atoms). It holds that

E[Y1:n] =
∞∫

0

1 − G(x)n dx and E[Y1:n+1 − Y1:n] =
∞∫

0

(
1 − G(x)

)
G(x)n dx.

Since Y1 is not almost surely constant, we have G(x) ∈ (0,1) on an interval of positive mass.
Thus the first integral is strictly increasing and the second one is strictly decreasing in n. This
shows that expectations E[Y1:n] of first order statistics are monotonically increasing and concave.
With an analogous argument, it follows that E[Yn:n] is decreasing and convex. Now we consider
E[h(X1:n)]. For an increasing function h, it holds that E[h(X1:n)] = E[Y1:n] where we define
Yi = h(Xi). For a decreasing h, it holds that E[h(X1:n)] = E[Yn:n]. This shows the monotonicity,
concavity and convexity properties of E[h(X1:n)].

Next we show that an increasing h which converges to infinity implies that E[h(X1:n)]
converges to infinity. Fix some m > 0. We show that, from some sufficiently large n on,
E[h(X1:n)] > m. By assumption, there is some x∗ ∈ (0, s) with h(x∗) > 2m. We can thus bound
E[h(X1:n)] by

21 See David [5].
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[
h(X1:n)

] =
s∫

0

h(x)f1:n(x) dx �
s∫

x∗
2mf1:n(x) dx � 2m

(
1 − F

(
x∗)n)

.

Thus we can guarantee E[h(X1:n)] > m by choosing n sufficiently large, implying that
E[h(X1:n)] converges to infinity. The proof for a decreasing h which converges to zero is com-
pletely analogous: For sufficiently large n, most mass of F1:n lies on values where h is small. �
Proof of Lemma 2. It holds that

E[X2:n+1 − X2:n] =
s∫

0

F2:n(x) − F2:n+1(x) dx

=
s∫

0

n
(
F(x)n−1 − 2F(x)n + F(x)n+1)dx

=
s∫

0

nF(x)n−1(1 − F(x)
)2

dx =
s∫

0

h(x)f1:n(x) dx.

h is decreasing by the zoom rate formulation of increasing virtual valuations and it converges to
zero by A2. The results thus follow from Lemma 1. �
Proof of Corollary 1. By assumption, cn is weakly convex and, by Lemma 1, the sequences
E[X1:n] and E[X2:n] are strictly concave. Thus an = E[X1:n] − cn and bn = E[X2:n] − cn are
strictly concave. If n∗ and n∗+2 were maximizers of an, we would have a∗

n = an∗+2 which would
imply an∗+1 > max(an∗ , an∗+2). Thus at most two subsequent numbers n can be maximizers. The
same is true for bn. Moreover, since the increments of E[X2:n] converge to zero by Lemma 2
and since cn increases at least linearly, bn decreases from some point on. Thus we must have
np < ∞. �
Proof of Lemma 3. If E[X1:n] − E[X2:n] is increasing, it holds that E[X1:n+1] − E[X1:n] >

E[X2:n+1] − E[X2:n]. Thus the value of n which balances gains and costs from attracting an
additional bidder is larger under welfare-maximization than under revenue-maximization. This
implies nw � np . The case where E[X1:n] − E[X2:n] is decreasing is analogous. �
Proof of Lemma 4. The lemma follows from

E[X1:n − X2:n] =
s∫

0

F2:n(x) − F1:n(x) dx =
s∫

0

nF(x)n−1(1 − F(x)
)
dx

=
s∫

0

h(x)f1:n(x) dx

and from Lemma 1. �
Proof of Proposition 1. The proposition is an immediate consequence of Lemma 3, Lemma 4
and the definitions of IFR and DFR. �
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Proof of Proposition 2. Denote by Xk:n and Yk:n the respective order statistics from F and G.
From the recurrence relations on p. 45 of David [5] and from Theorem 3.B.31 of Shaked and
Shantikumar [14], it follows that

E[X1:k − X1:k−1] = 1

k
E[X1:k − X2:k] � 1

k
E[Y1:k − Y2:k] = E[Y1:k − Y1:k−1]

and

E[X2:k − X2:k−1] = 2

k
E[X2:k − X3:k] � 2

k
E[Y2:k − Y3:k] = E[Y2:k − Y2:k−1].

Thus arguing as in the proof of Lemma 3 proves our claim. �
Proof of Lemma 5. Recall that

on = E
[
max

(
VF (X1:n),0

)] =
∞∫

r∗
VF (x)f1:n(x) dx.

This implies the desired expression for E[X1:n] − on. The expression for on − E[X2:n] follows
from on − E[X2:n] = (E[X1:n] − E[X2:n]) − (E[X1:n] − on) together with our expressions for
E[X1:n] − E[X2:n] and E[X1:n] − on. �
Proof of Corollary 2. The properties of on − E[X2:n] follow directly from Lemma 1 and
Lemma 5 as the function h2(x) from Lemma 5 is decreasing by the increasing virtual valua-
tions condition and zero for x > r∗. Comparing the maximization problems for E[X2:n] − cn

and on − cn yields that the latter problem must have smaller solutions no since we add a decreas-
ing sequence to the objective function of the former problem. �
Proof of Corollary 3. This follows from Lemma 1 and Lemma 5 as the function h1(x) from
Lemma 5 is increasing if F is DFR. The inequality nw � no follows like in the proof of
Lemma 3. �
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