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Proofs for Section 4

Proof of Corollary 1. We focus with no loss of generality on the case where (8) holds neither

under P nor under P. We need to show that F (tc) ≥ F (tc). For this we show that the unique

t̂ defined by F (tc) = F (t̂) satisfies t̂ ≥ tc. We have∫ 1

t̂
(θ − ta)P(dθ) =

∫ 1

F−1(F (tc))
(θ − ta)P(dθ)

=

∫ 1

F (tc)
[F−1(p)− ta] dp

≥
∫ 1

F (tc)
[F−1(p)− ta] dp

=

∫ 1

tc
(θ − ta)P(dθ)

= 0

=

∫ 1

tc
(θ − ta)P(dθ),

where the inequality follows from Shaked and Shanthikumar (2007, Section 4.A.1), and the last

two equalities follow from (9). If t̂ ≥ ta, then a fortiori t̂ > tc. Otherwise, max{tc, t̂} < ta

implies that θ − ta < 0 for θ between tc and t̂, so that t̂ ≥ tc from the above inequality. Hence

the result. �

Proof of Corollary 2. For future reference, we more generally show the result for any

right-truncation Pb ≡ P[· |θ ≤ b] of P, with cdf Fb and density fb over [0, b], where 1
δ2C

< b ≤ 1.

Corollary 2 corresponds to the special case b = 1. A first observation is that MHRP is preserved
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by right-truncation.

Lemma A.1 If P satisfies MHRP, then so does Pb for any b ∈ (0, 1).

Proof. For each t ∈ [0, b), we have

rb(t) ≡
fb(t)

1− Fb(t)
∝ f(t)

F (b)− F (t)
= r(t)

1− F (t)

F (b)− F (t)
,

so that rb(t) is the product of two strictly positive and strictly increasing functions of t. The

result follows. �

Now, fix some b ∈ ( 1
δ2C

, 1) and, for each β ∈ ( 1
bδ2C

, 1), define

φb(β) ≡ Eb

[
θ |θ ≥ 1 + βδ

(1 + δ)βδ2C

]
− 1

βδ2C
. (A.4)

We show that there exists a unique solution βub to φb(β) = 0 and that φb(β) ≥ 0 if and only if

β ≥ βub . This, in particular, implies Corollary 2, with βu ≡ βu1 . Because f is continuous, so is

φb. Hence, by the intermediate value theorem, we only need to check that φb(
1

bδ2C
) < 0, that

φb(1) > 0, and that φb is strictly increasing. As for the first two statements, we have

φb

(
1

bδ2C

)
= Eb

[
θ |θ ≥ 1 + bδC

(1 + δ)δC

]
− b and φb(1) = Eb

[
θ |θ ≥ 1

δ2C

]
− 1

δ2C
,

and the result follows from bδ2C > 1 and the fact that Pb has full support over [0, b]. As

for the third statement, notice that, letting ξ ≡ 1
βδ2C

and changing variables accordingly, it is

equivalent to the claim that

Eb

[
θ |θ ≥

ξ + 1
δC

1 + δ

]
− ξ

is strictly decreasing in ξ ∈ ( 1
δ2C

, b). A classical result from reliability theory (see, e.g., Bryson

and Siddiqui 1969) states that, for a distribution that satisfies MHRP, the mean residual life is

strictly decreasing in the age. By Lemma A.1, such is the case of Pb, and thus

d

dt
Eb [θ |θ ≥ t] < 1

for all b ∈ (0, 1) and t ∈ [0, b). It follows that

d

dξ
Eb

[
θ |θ ≥

ξ + 1
δC

1 + δ

]
<

1

1 + δ
< 1

for all ξ ∈ ( 1
δ2C

, b). Hence the result. �

Proof of Corollary 3. By (3)–(4) and (9), the probability of harmful consumption is

F (tc)− F (th) = F (tc)− F

(
E[θ |θ ≥ tc] + 1

δC

1 + δ

)
.
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As observed in the main text, tc is strictly decreasing in β ∈ ( 1
δ2C

, βu). Hence it is sufficient to

show that

H(t) ≡ F (t)− F

(
E[θ |θ ≥ t] + 1

δC

1 + δ

)
(A.5)

is strictly increasing in t ∈ (tu, 1), where

tu ≡ 1 + βuδ

(1 + δ)βuδ2C
.

Notice for future reference that, for each t ∈ (tu, 1),

t >
E[θ |θ ≥ t] + 1

δC

1 + δ
(A.6)

because, as βu is the unique value of β ∈ ( 1
δ2C

, 1) that achieves equality in (10), (A.6) becomes

an equality at t = tu and because, as P satisfies MHRP, the mapping t 7→ (1 + δ)t−E[θ |θ ≥ t]

is strictly increasing over [0, 1). Then, for each t ∈ (tu, 1),

H ′(t) = f(t)− 1

1 + δ
f

(
E[θ |θ ≥ t] + 1

δC

1 + δ

)
d

dt
E[θ |θ ≥ t]

≥ f(t)− 1

1 + δ
f

(
E[θ |θ ≥ t] + 1

δC

1 + δ

)
> 0, (A.7)

where the first inequality again follows from MHRP, and the second inequality follows from (11)

and (A.6). Hence the result. �

Corollary A.1 If P satisfies MHRP and f is nonincreasing in a left-neighborhood of t = 1 or

strictly positive at t = 1, and if

f(1) <
1

2(1 + δ)
f

(
1 + 1

δC

1 + δ

)
, (A.8)

then the probability F (tc) − F (th) that harmful consumption takes place under the optimal IC

mechanism is strictly increasing in β in a right-neighborhood of β = 1
δ2C

.

Proof. Defining H as in (A.5), we have

d

dβ
[F (tc)− F (th)] > 0

in a strict right-neighborhood of β = 1
δ2C

if and only if H ′ < 0 in a strict left-neighborhood of

t = 1 or, equivalently, by (A.7),

f(1)− 1

1 + δ
f

(
1 + 1

δC

1 + δ

)
lim inf
t→1−

d

dt
E[θ |θ ≥ t] < 0. (A.9)
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We need to show that (A.8) implies (A.9) if f(1) > 0 or, if f(1) = 0, if f is nonincreasing in a

left-neighborhood of t = 1.1 That is, we need to show that, under these assumptions,

lim inf
t→1−

d

dt
E[θ |θ ≥ t] ≥ 1

2
.

Suppose, by way of contradiction, that there exists a sequence (tn)n∈N in (0, 1) converging to 1

such that, for some ε > 0,

d

dt
E[θ |θ ≥ t]

∣∣∣∣
t=tn

<
1− ε

2

for all n. Then, because

d

dt
E[θ |θ ≥ t] =

f(t)

1− F (t)
{E[θ |θ ≥ t]− t},

we have

f(tn)

{∫ 1

tn

θf(θ) dθ − tn[1− F (tn)]

}
− 1− ε

2
[1− F (tn)]2 < 0 (A.10)

for all n. Consider then the function

I(t) ≡ f(t)

{∫ 1

t
θf(θ) dθ − t[1− F (t)]

}
− 1− ε

2
[1− F (t)]2.

We clearly have I(1) = 0. We now show that, under the stated assumptions on f , I is strictly

decreasing in a left-neighborhood of t = 1, which, given (A.10), yields the desired contradiction

as the sequence (tn)n∈N converges to 1. As I is continuous, it is sufficient to show that its right

upper Dini derivative D+I is strictly negative in a strict left-neighborhood of t = 1 (Giorgi and

Komlósi 1992, Theorem 1.14). By continuity of f , the mapping t 7→
∫ 1
t θf(θ) dθ− t[1−F (t)] is

continuously differentiable. A simple calculation then shows that, for each t ∈ (0, 1),

D+I(t) = [1− F (t)](D+f(t){E[θ |θ ≥ t]− t} − εf(t)).

Now, recall that, by assumption, f is strictly positive over (0, 1). Thus, if f(1) > 0, then

D+I is strictly negative in a strict left-neighborhood of t = 1 because the mean residual life

E[θ | θ ≥ t] − t converges to zero as t goes to 1; similarly, if f(1) = 0, then, because the mean

residual life E[θ | θ ≥ t] − t is strictly positive for all t ∈ [0, 1), the same conclusion obtains

if f is nonincreasing, so that its right upper Dini derivative D+f is nonpositive in a strict

left-neighborhood of t = 1. Hence the result. �

The somewhat convoluted condition (A.8) can be interpreted as follows. If initially β ≈ 1
δ2C

,

then nearly all types consume under the optimal IC mechanism, that is, tc ≈ 1. If β increases

1Notice that, in the latter case, condition (A.8) is automatically satisfied.
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by dβ, then tc decreases by some amount dtc, so that a mass of types approximately equal to

f(1) dtc can be neutralized. At the same time,

th =
E[θ |θ ≥ tc] + 1

δC

1 + δ
≈

1 + 1
δC

1 + δ

decreases by an amount

dth ≈ dtc

1 + δ

d

dt
E[θ |θ ≥ t]

∣∣∣∣
t=1−

≥ dtc

2(1 + δ)

under the weak conditions we impose on f .2 The mass of new types thus trapped in harmful

consumption is bounded below by 1
2(1+δ) f(th) dtc, which exceeds the mass f(1) dtc of neutralized

types if condition (A.8) is satisfied. As a result, the probability of the harmful-consumption

trap (th, tc) locally increases in β. Notice that, because f is assumed to be strictly positive over

(0, 1), condition (A.8) is satisfied as soon as f(1) = 0.

Proofs for Section 5

Proof of Proposition 2. For each βH ∈ (βL, 1), we denote by ta(βH), th(βH), tc(βH), and

t∗(βH) ≡ max{th(βH), tc(βH)} the relevant cutoffs defined in Sections 2–3. It follows from

(3)–(4) that ta and th are continuous. As for tc and t∗, notice that, for each βH ∈ (βL, 1), the

assumption that P has a continuous density f allows us to rewrite (9) as∫ 1
tc(βH) θf(θ) dθ

1− F (tc(βH))
=

1

βHδ2C
, (A.11)

which implies, using again the assumption that f is continuous, that tc and t∗ are continuous

as well. Now, for each βH ∈ (βL, 1), define

ϕt∗L(βH) ≡ E[θ | t∗(βH) ≤ θ < t∗L]− ta(βH) =

∫ t∗L
t∗(βH) θf(θ) dθ

F (t∗L)− F (t∗(βH))
− 1

βHδ2C
. (A.12)

Because f and t∗ are continuous, so is ϕt∗L . Hence, by the intermediate value theorem, we only

need to check that ϕt∗L(β+L ) < 0, that ϕt∗L(1) > 0, and that ϕt∗L crosses zero only once. As for

the first two statements, we have

ϕt∗L(β+L ) = t∗L − ta(βL) and ϕt∗L(1) = E[θ | t∗(1) ≤ θ < t∗L]− ta(1),

and the result follows from t∗L < taL = ta(βL), t∗(1) = ta(1) = th(1) < thL ≤ t∗L, and the fact that

P has full support over [0, 1]. As for the third statement, we distinguish two cases.

Case 1 If βL < βH < βu, with βu defined as in Corollary 2, then the unconstrained-optimal

2The intuition for the factor 1
2

is easy to grasp when f(1) > 0. Indeed, in that case, the distribution of θ
conditional on θ ≥ t is approximately uniform when t is close to 1 as f is continuous, and, hence, a marginal
increase dt in t increases E [θ |θ ≥ t] by approximately d[ 1

2
(t+ 1)] = 1

2
dt.
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mechanism for type H is not IC and, therefore, t∗(βH) = tc(βH) > th(βH). In this case, from

(A.11)–(A.12), we have

ϕt∗L(βH) =

∫ t∗L
tc(βH) θf(θ) dθ

F (t∗L)− F (tc(βH))
−

∫ 1
tc(βH) θf(θ) dθ

1− F (tc(βH))
< 0

as t∗L < 1 and P has full support over [0, 1]. It follows that ϕt∗L cannot cross zero over (βL, β
u),

and thus that the desired threshold cannot belong to this interval.

Case 2 If βH ≥ max{βL, βu}, then the unconstrained-optimal mechanism for type H is IC

and, therefore, t∗(βH) = th(βH). In this case, we have

ϕt∗L(βH) = E

[
θ | 1 + βHδ

(1 + δ)βHδ2C
≤ θ < t∗L

]
− 1

βHδ2C
= φt∗L(βH),

where φt∗L(βH) is as defined in (A.4) with b = t∗L. As shown in the proof of Corollary 2, because

P satisfies MHRP, φt∗L is strictly increasing and vanishes at a single point βut∗L
, which defines the

desired threshold βniH (βL). That βniH (βL) > βu was shown in Case 1. That βniH (βL) is strictly

increasing in βL follows from the fact that t∗L = t∗(βL) and, thus, φt∗L are strictly decreasing in

βL. Hence the result. �

Proof of Proposition 3. A useful preliminary observation is that, because the mechanism

designer always prefers a higher abstinence rate than the DM, we can, in analogy with the

proof of Proposition 1, neglect constraints (17) and (19) in our quest for an optimal IC joint

mechanism. That is, the following result holds.

Lemma A.2 Any solution to the relaxed problem

max

 ∑
i=L,H

piβi{thi E[Πi(θ)]−E[θΠi(θ)]} : π satisfies (16) and (18)

 (A.13)

is a solution to problem (20).

Proof. We show that any solution to (A.13) satisfies (17) and (19), and thus is a solution to

(20). We accordingly distinguish two cases.

Case 1 Suppose, by way of contradiction, that a solution (πLH , πL, π∅) to (A.13) violates

(17). Then type L would prefer to abstain whenever the recommendation is L. Because the

utility from consumption is weakly lower for the mechanism designer than for type L, the

former prefers that type L abstain in this case, and a fortiori that type H abstain as taH < taL.

Therefore, the joint mechanism (πLH , 0, π∅+πL) would satisfy (16) and (18) and improve upon

the solution to (A.13), a contradiction.

Case 2 Suppose, by way of contradiction, that a solution (πLH , πL, π∅) to (A.13) violates
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(19). Then type H would prefer to abstain whenever the recommendation is LH. Because

the utility from consumption is weakly lower for the mechanism designer than for type H, the

former prefers that type H abstain in this case. Therefore, the joint mechanism (0, πL+πLH , π∅)

would satisfy (16) and (18) and improve upon the solution to (A.13), once again a contradiction.

The result follows. �

Among all joint mechanisms (πLH , πL, π∅) that issue the recommendation LH with some

probability γLH , those such that

πLH(θ) = 1{θ<tγLH}

for tγLH ≡ F−1(γLH) are the best for efficiency purposes as they minimize the expected harm

from consumption for a given probability of joint consumption. The following lemma shows

that they are also best at satisfying the incentive constraints (16) and (18), as they issue

recommendations to abstain to higher-risk types than any other joint mechanism that satisfies

the same constraints and issues the same recommendations with the same probabilities.

Lemma A.3 For any joint mechanism π ≡ (πLH , πL, π∅) that satisfies (16) and (18), there

exists a joint mechanism π̃ ≡ (π̃LH , π̃L, π̃∅) that also satisfies (16) and (18), and such that

E[π̃j(θ)] = E[πj(θ)], j = LH,L, ∅, (A.14)

π̃LH(θ) = 1{θ<tγLH} (A.15)

for γLH ≡ E[πLH(θ)] and tγLH ≡ F−1(γLH). Moreover, π̃ achieves a weakly higher value in

(A.13) than π, and strictly so if π does not satisfy (A.15) on a P-nonnull set.

Proof. For the proof of this lemma, it is convenient to work with an equivalent formulation

of a joint mechanism, due to Aumann (1964). Let Ω ≡ [0, 1] be a sample space, endowed with

Lebesgue measure λ over the Borel sets. It follows from Aumann (1964, Lemma F) that, for

every joint mechanism π ≡ (πLH , πL, π∅), there exists a measurable direct mechanism x : Θ ×

Ω→ {LH,L, ∅} issuing, for every type θ ∈ Θ and for every element ω ∈ Ω, a recommendation

for both types to consume (LH), for only type L to consume (L), or for both types to abstain

(∅), and such that

πj(θ) ≡ λ[{ω ∈ Ω : x(θ, ω) = j}], (θ, j) ∈ Θ× {LH,L, ∅}. (A.16)

Conversely, for any measurable direct persuasion mechanism x : Θ × Ω → {LH,L, ∅}, (A.16)

uniquely defines a joint mechanism π ≡ (πLH , πL, π∅).

Now, let x : Θ × Ω → {LH,L, ∅} be the direct mechanism associated to π, and, for each
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j ∈ {LH,L, ∅}, let

γj(tγLH ) ≡ P⊗ λ[{(θ, ω) ∈ Θ× Ω : x(θ, ω) = j ∧ θ < tγLH}]

be the probability that x issues recommendation j and θ < tγLH . Define a new direct joint

persuasion mechanism

x̃(θ, ω) ≡


LH if θ < tγLH ,

L if θ ≥ tγLH ∧
(
x(θ, ω) = L ∨

(
x(θ, ω) = LH ∧ ω < γL(tγLH )

γL(tγLH )+γ∅(tγLH )

))
,

∅ if θ ≥ tγLH ∧
(
x(θ, ω) = ∅ ∨

(
x(θ, ω) = LH ∧ ω ≥ γL(tγLH )

γL(tγLH )+γ∅(tγLH )

))
,

and let π̃ ≡ (π̃LH , π̃L, π̃∅) be the corresponding joint mechanism. The direct mechanism x̃ is

constructed so that the recommendation probabilities are the same as under x, but consumption

is recommended to both types if and only if θ < tγLH . Hence (A.14)–(A.15) hold by construction.

Moreover, π̃ satisfies the incentive constraints (16) and (18), as it issues recommendations to

abstain to higher-risk types than π. Finally, π̃ weakly improves efficiency upon π, as it induces

the same expected consumption levels with a lower expected harm from consumption, and

strictly so if π does not satisfy (A.15) on a P-nonnull set. The result follows. �

Lemma A.3 implies that any solution π∗∗ ≡ (π∗∗LH , π
∗∗
L , π

∗∗
∅ ) to (A.13) is such that, for some

cutoff t∗∗LH , we have (up to a P-null set)

π∗∗LH(θ) = 1{θ<t∗∗LH}.

For any such joint mechanism, type H consumes if and only if θ < t∗∗LH . Thus his consumption

behavior is already fully determined. Hence, given an optimal cutoff t∗∗LH , problem (A.13)

reduces to finding a measurable function π∗∗L : [0, 1]→ [0, 1] that vanishes over [0, t∗∗LH) and that

solves the following problem:

max{thLE[πL(θ)]−E[θπL(θ)] : π satisfies (16) and (18)}. (A.17)

As in Section 3, the left-hand side of constraint (16) is not well-defined if π∅ = 0 P-almost surely

over [t∗∗LH , 1), and similarly the left-hand side of constraint (18) is not well-defined if πL = 0

P-almost surely over [t∗∗LH , 1). To circumvent this problem, we again adopt the convention that

the undefined constraint is emptily satisfied, which allows us to linearize the constraints (16)

and (18). We start with an existence result.

Lemma A.4 Problems (A.17), (A.13), and (20) have a solution.

Proof. Our convention on the constraints (16) and (18) allows us to rewrite (A.17) as

max{thLE[πL(θ)]−E[θπL(θ)] : E[θ[1− πL(θ)] |θ ≥ t∗∗LH ] ≥ taLE[1− πL(θ) |θ ≥ t∗∗LH ]

and E[θπL(θ)] ≥ taHE[πL(θ)]}, (A.18)
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where the maximum is taken over the set

S ≡ {πL ∈ L∞(P) : πL(θ) ∈ [0, 1] for all θ ∈ [0, 1] and πL(θ) = 0 for all θ ∈ [0, t∗∗LH)}. (A.19)

Notice that S is a closed subset of the unit ball BL∞(P) of L∞(P) when the latter set is

endowed with the weak∗ topology σ(L∞(P), L1(P)), which we henceforth assume without

further mention. By the Banach–Alaoglu compactness theorem (Aliprantis and Border 2006,

Theorem 6.21), S is thus compact in that topology, and so is by duality the set S′ of the

functions in S that satisfy the constraints in (A.18); notice furthermore that S′ is nonempty as

it contains the function

πL(θ) = 1{taH≤θ<t
a
L}1{θ≥t

∗∗
LH}.

Because S′ is a nonempty compact set and the objective function in (A.18) is continuous in

πL by duality, (A.18) and, hence, (A.17) have a solution. To complete the proof, observe

that, by Lemma A.2, we only need to show that (A.13) has a solution. Treating t∗∗LH as a

parameter, Berge’s maximum theorem (Aliprantis and Border 2006, Theorem 17.31) implies that

the solutions to (A.17) as t∗∗LH varies are described by an upper hemicontinuous correspondence

$∗∗L : [0, 1] � BL∞(P) with nonempty compact values. Thus, by Lemma A.3, (A.13) reduces

to maximizing a continuous function of (t∗∗LH , π
∗∗
L ) over {(t∗∗LH , π∗∗L ) : t∗∗LH ∈ [0, 1] and π∗∗L ∈

$∗∗L (t∗∗LH)}, which is a nonempty compact set by the closed graph theorem (Aliprantis and

Border 2006, Theorem 17.11). The result follows. �

We are now ready to characterize the solutions to (A.17).

Lemma A.5 Under Assumption 2, problem (A.17) has a solution of the form (23).

Proof. We distinguish two cases.

Case 1 If constraint (18) is slack at the optimum, then (A.17) reduces to finding an optimal

mechanism for type L alone, as described in Section 3. Proposition 1 yields that this mechanism

is given (up to a P-null set) by

Π∗∗L (θ) = 1{θ<t∗L},

so that

π∗∗L (θ) = 1{t∗∗LH≤θ<t
∗
L}.

Hence we must have t∗∗LH = t∗H as (18) is slack. We thus fall back on the joint mechanism (14),

which is IC if and only if condition (15) holds.
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Case 2 If constraint (18) is binding at the optimum, that is, according to Case 1, if condition

(15) does not hold, then

E[θπL(θ)]

E[πL(θ)]
= taH . (A.20)

Plugging (A.20) into the objective function in (A.17), the problem becomes3

max{(thL − taH)E[πL(θ)] : π satisfies (16) and (A.20)}. (A.21)

Our convention on the constraints (16) and (18) allows us to replace expectations in (A.21) by

integrals, yielding the equivalent problem

max

{
(thL − taH)

∫ 1

t∗∗LH

πL(θ)f(θ) dθ :

∫ 1

t∗∗LH

θ[1− πL(θ)]f(θ) dθ ≥ taL
∫ 1

t∗∗LH

[1− πL(θ)]f(θ) dθ

and

∫ 1

t∗∗LH

θπL(θ)f(θ) dθ = taH

∫ 1

t∗∗LH

πL(θ)f(θ) dθ

}
,

where the maximum is taken over the set S defined by (A.19). Because S is convex and the

objective function as well as the constraints are affine in πL, this equivalent problem is convex.

Therefore, by the Kuhn–Tucker theorem (Clarke 2013, Theorem 9.4), for any solution π∗∗L to

this problem, which by construction is a solution to (A.21) and (A.17), there exists a vector of

Lagrange multipliers (η∗∗, λ∗∗, µ∗∗) such that the following properties are satisfied:

1. Nontriviality :

(η∗∗, λ∗∗, µ∗∗) 6= (0, 0, 0). (A.22)

2. Positivity :

η∗∗ ∈ {0, 1} and λ∗∗ ∈ R+. (A.23)

3. Lagrangian maximization:

π∗∗L ∈ arg max

{∫ 1

t∗∗LH

h∗∗(θ)πL(θ)f(θ) dθ : πL ∈ S

}
, (A.24)

where h∗ is the affine function defined by

h∗∗(θ) ≡ η∗∗(thL − taH) + λ∗∗taL + µ∗∗taH − (λ∗∗ + µ∗∗)θ.

4. Complementary slackness:

λ∗∗

{∫ 1

t∗∗LH

θ[1− π∗∗L (θ)]f(θ) dθ − taL
∫ 1

t∗∗LH

[1− π∗∗L (θ)]f(θ) dθ

}
= 0. (A.25)

3We keep the multiplicative constant thL− taH , which is strictly positive under Assumption 2, in order to make
Lemma A.5 relevant when this assumption does not hold, as in Proposition 4.
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5 Equality constraint : ∫ 1

t∗∗LH

θπ∗∗L (θ)f(θ) dθ = taH

∫ 1

t∗∗LH

π∗∗L (θ)f(θ) dθ. (A.26)

We distinguish four subcases.

Subcase 2.1 If h∗∗(θ) > 0 for all θ ∈ (t∗∗LH , 1), then the objective function in (A.24) is

uniquely (up to a P-null set) maximized over S by

π∗∗L (θ) = 1{θ≥t∗∗LH},

which corresponds to a cutoff t∗∗L = 1 in (23). Notice that (A.25) is automatically satisfied and

that (A.26) becomes

E[θ |θ ≥ t∗∗LH ] = taH .

Hence we must have t∗∗LH = tcH = t∗H . That is, type L always consumes and type H is facing his

individually optimal mechanism.

Subcase 2.2 If h∗∗(θ) < 0 for all θ ∈ (t∗∗LH , 1), then the objective function in (A.24) is

uniquely (up to a P-null set) maximized over S by

π∗∗L (θ) = 0,

which corresponds to a cutoff t∗∗L = t∗∗LH in (23). Notice that (A.26) is automatically satisfied,

and that (A.25) becomes

λ∗∗{E[θ |θ ≥ t∗∗LH ]− taL} = 0.

Hence we must have t∗∗LH = tcL if λ∗∗ > 0.

Subcase 2.3 Suppose that h∗∗ changes sign over (t∗∗LH , 1)—so that, in particular, λ∗∗+µ∗∗ 6=

0—at the cutoff

t∗∗L ≡
η∗∗(thL − taH) + λ∗∗taL + µ∗∗taH

λ∗∗ + µ∗∗
.

We claim that λ∗∗ + µ∗∗ > 0. Indeed, if λ∗∗ + µ∗∗ < 0, then the objective function in (A.24) is

uniquely (up to a P-null set) maximized over S by

π∗∗L (θ) = 1{θ≥t∗∗L }, (A.27)

so that

π∗∗∅ (θ) = 1{t∗∗LH≤θ<t
∗∗
L }. (A.28)
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Now, given (A.28), (16) requires

E[θ | t∗∗LH ≤ θ < t∗∗L ] ≥ taL. (A.29)

However, we know from Lemma A.2 that any solution to (A.13) and, hence, to (A.17) and

(A.21), is also a solution to (20). In particular, given (A.27), (17) requires

E[θ |θ ≥ t∗∗L ] ≤ taL,

in contradiction with (A.29) as P has full support over [0, 1]. Thus λ∗∗ + µ∗∗ > 0, as claimed,

and the objective function in (A.24) is uniquely (up to a P-null set) maximized over S by

π∗∗L (θ) = 1{t∗∗LH≤θ<t
∗∗
L },

once again in line with (23).

Subcase 2.4 Suppose finally that h∗∗ is identically zero over (t∗∗LH , 1)—so that, in particular,

λ∗∗ + µ∗∗ = 0. Then

η∗∗(thL − taH) + λ∗∗(taL − taH) = 0.

Because taL > taH , we have η∗∗ = 1 by (A.23); otherwise, by (A.23) again, η∗∗ = λ∗∗ = µ∗∗ = 0,

which violates (A.22). Applying (A.23) yet again, we obtain taH ≥ thL, with equality if and only

if λ∗∗ = 0. Hence this subcase cannot arise under Assumption 2. The result follows. �

Proposition 3 is then an immediate consequence of Lemma A.5. Hence the result. �

Proof of Lemma 3. We solve (A.13) for the optimal cutoffs (t∗∗LH , t
∗∗
L )—the existence of

which we established in Proposition 3—under the assumption that the individually optimal

mechanisms with cutoffs t∗H and t∗L are not simultaneously implementable, that is, (15) does

not hold. We first claim that we can restrict attention to cutoffs (tLH , tL) such that tL ≥ t∗L. To

prove this claim, we distinguish two cases. If t∗L > thL, then (16) is satisfied if and only if tL ≥ t∗L.

If t∗L = thL, then, for any given tLH , any cutoff tL < thL would induce an inefficiently high rate

of abstinence for type L and would tighten (18) compared to tL = thL; hence an optimal cutoff

tL must satisfy tL ≥ thL, which is IC as thL = t∗L. The claim follows. Replacing expectations in

(A.13) by integrals then yields the equivalent problem

max

{
pLβL

∫ tL

0
(thL − θ)f(θ) dθ + pHβH

∫ tLH

0
(thH − θ)f(θ) dθ

}
, (A.30)

subject to the constraints ∫ tL

tLH

(θ − taH)f(θ) dθ ≥ 0, (A.31)

tL − t∗L ≥ 0, (A.32)

1− tL ≥ 0. (A.33)
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The objective function in (A.30) is continuous in (tLH , tL) and the feasible set defined by

(tLH , tL) ∈ [0, 1]2 and (A.31)–(A.33) is nonempty and compact. Hence problem (A.30)–(A.33)

has a solution (t∗∗LH , t
∗∗
L ). The proof consists of four steps.

Step 1 We first show that t∗∗L > taH > t∗∗LH ≥ thH in any solution (t∗∗LH , t
∗∗
L ) to (A.30)–(A.33).

That t∗∗L > taH follows from our preliminary observation that tL ≥ thL along with Assumption 2.

As for t∗∗LH , suppose, by way of contradiction, that t∗∗LH ≥ taH . Because t∗∗L > taH , we have∫ t∗∗L

taH

(θ − taH)f(θ) dθ > 0.

Hence lowering t∗∗LH to a value taH − ε for some small ε > 0 would preserve (A.31) and strictly

increase the objective in (A.30), a contradiction. Thus taH > t∗∗LH , as claimed. The proof

that t∗∗LH ≥ thH is similar, observing that the left-hand side of (A.31) is strictly increasing in

tLH ∈ [0, taH ] and the objective function in (A.30) is strictly increasing in tLH ∈ [0, thH ].

Step 2 We next verify that the constraints (A.31)–(A.33) satisfy the Mangasarian–Fromovitz

qualification conditions at (t∗∗LH , t
∗∗
L ) (Mangasarian 1969, 11.3.5). Letting g be the mapping

defined by the left-hand sides of the binding constraints at (t∗∗LH , t
∗∗
L ), we must prove that

∇g(t∗∗LH , t
∗∗
L )zT > 0

has a solution z ∈ R2, where ∇g(t∗∗LH , t
∗∗
L ) is the Jacobian matrix of g at (t∗∗LH , t

∗∗
L ). This is

obvious if (A.31) is not binding. If (A.31) is binding, then the first line of ∇g(t∗∗LH , t
∗∗
L ) is

Dg1(t
∗∗
LH , t

∗∗
L ) ≡

(
(taH − t∗∗LH)f(t∗∗LH) (t∗L − taH)f(t∗∗L )

)
.

We shall exploit the fact that f is strictly positive over (0, 1). Notice first that, because taH >

t∗∗LH ≥ thH by Step 1, we always have (taH − t∗∗LH)f(t∗∗LH) > 0. If only (A.31) is binding, then

1 > t∗∗L > taH by Step 1, so that (t∗L − taH)f(t∗∗L ) > 0 and

∇g(t∗∗LH , t
∗∗
L ) = Dg1(t

∗∗
LH , t

∗∗
L ).

We can then take any z ∈ R2
++. Next, if (A.31) and (A.32) are binding, then t∗∗L = t∗L, so that

(t∗L − taH)f(t∗∗L ) > 0 and

∇g(t∗∗LH , t
∗∗
L ) =

(
(taH − t∗∗LH)f(t∗∗LH) (t∗L − taH)f(t∗∗L )

0 1

)
.

We can then take any z ∈ R2
++. Finally, if (A.31) and (A.33) are binding, then it is optimal to

have t∗∗LH = t∗H by Proposition 1, and

∇g(t∗∗LH , t
∗∗
L ) =

(
(taH − t∗∗LH)f(t∗∗LH) (t∗L − taH)f(t∗∗L )

0 −1

)
.

We can then take z = (1, ε) for some small enough ε < 0.
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Step 3 According to Step 2, constraints (A.31)–(A.33) are qualified at any solution (t∗∗LH , t
∗∗
L )

to (A.30)–(A.33). Therefore, by the Kuhn–Tucker necessary optimality conditions for nonconvex

optimization problems (Mangasarian 1969, 11.3.6), there exists a vector of Lagrange multipliers

(ζ∗∗, ν∗∗, χ∗∗) such that the following properties are satisfied:

1. Positivity :

(ζ∗∗, ν∗∗, χ∗∗) ∈ R3
+. (A.34)

2. First-order conditions:

pLβL(thL − t∗∗L )f(t∗∗L ) + ζ∗∗(t∗∗L − taH)f(t∗∗L ) + ν∗∗ − χ∗∗ = 0, (A.35)

pHβH(thH − t∗∗LH)f(t∗∗LH)− ζ∗∗(t∗∗LH − taH)f(t∗∗LH) = 0. (A.36)

3. Complementary slackness:

ζ∗∗
∫ t∗∗L

t∗∗LH

(θ − taH)f(θ) dθ = 0, (A.37)

ν∗∗(t∗∗L − t∗L) = 0, (A.38)

χ∗∗(1− t∗∗L ) = 0. (A.39)

We distinguish three cases.

Case 1 Suppose first that (A.32) is binding, so that t∗∗L = t∗L and χ∗∗ = 0 by (A.39), and

suppose further, by way of contradiction, that ζ∗∗ = 0. Then, by (A.36) along with the fact

that f(t∗∗LH) > 0 as taH > t∗∗LH ≥ thH by Step 1 and f is strictly positive over (0, 1), we must have

t∗∗LH = thH ≤ t∗H . Therefore, using the assumption that the individually optimal mechanisms

with cutoffs t∗H and t∗L are not simultaneously implementable, we obtain

E[θ | t∗∗LH ≤ θ < t∗L] ≤ E[θ | t∗H ≤ θ < t∗L] < taH .

But then (A.31) is violated at (t∗∗LH , t
∗
L), a contradiction. Hence, by (A.34), ζ∗∗ > 0, so that, by

(A.37), (A.31) must be binding at (t∗∗LH , t
∗
L). That is, t∗∗LH must satisfy∫ t∗L

t∗∗LH

(θ − taH)f(θ) dθ = 0. (A.40)

Because f is strictly positive over (0, 1), we have f(t∗L) > 0; moreover, as argued above, f(t∗∗LH) >

0. Because χ∗∗ = 0 ≤ ν∗∗ by (A.34), the first-order conditions (A.35)–(A.36) rewrite as

pLβL(thL − t∗L) + ζ∗∗(t∗L − taH) ≤ 0, (A.41)

pHβH(thH − t∗∗LH)− ζ∗∗(t∗∗LH − taH) = 0. (A.42)
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Because ζ∗∗ > 0 and t∗L ≥ thL > taH , (A.41) implies t∗L > thL. Hence the bracketed terms in (A.41)

are different from zero. Moreover, because the bracketed terms in (A.42) cannot simultaneously

be zero, none of them can be zero. Because thH ≤ t∗∗LH < taH by Step 1, we can thus divide (A.42)

by (A.41), which yields

pHβH
pLβL

t∗∗LH − thH
t∗L − thL

≤
taH − t∗∗LH
t∗L − taH

. (A.43)

Case 2 Suppose next that (A.33) is binding, so that t∗∗L = 1 and ν∗∗ = 0 by (A.38). By

Proposition 1, it is then optimal to have t∗∗LH = t∗H . Because f is strictly positive over (0, 1), we

have f(t∗H) > 0. The first-order condition (A.36) then rewrites as

pHβH(thH − t∗H)− ζ∗∗(t∗H − taH) = 0, (A.44)

so that t∗H > thH if and only if ζ∗∗ > 0. If f(1) > 0, then, because χ∗∗ ≥ 0 = ν∗∗ by (A.34), we

can also simplify (A.35) to obtain

pLβL(thL − 1) + ζ∗∗(1− taH) ≥ 0. (A.45)

The argument leading to (A.45) is a bit more involved if f(1) = 0. In that case, it follows from

(A.35) and ν∗∗ = 0 that χ∗∗ = 0 as well. Hence the relevant part of the Lagrangian, to be

maximized with respect to tL, can be written as∫ tL

t∗H

[pLβL(thL − θ) + ζ∗∗(θ − taH)]f(θ) dθ,

which, as f is strictly positive over (0, 1), is maximum for tL = 1 only if (A.45) holds. By (A.34)

and (A.45), ζ∗∗ > 0, so that, by (A.37), (A.31) must be binding at (t∗H , 1). That is, t∗H must

satisfy ∫ 1

t∗H

(θ − taH)f(θ) dθ = 0, (A.46)

which generically implies that t∗H > thH , so that the unconstrained-optimal mechanism for type

H is not IC. The terms t∗H − taH and 1− taH in (A.44)–(A.45) are by construction different from

zero. We can thus divide (A.44) by (A.45), which yields

pHβH
pLβL

t∗H − thH
1− thL

≥
taH − t∗H
1− taH

. (A.47)

Case 3 Suppose finally that (A.32)–(A.33) are not binding, so that ν∗∗ = χ∗∗ = 0 by

(A.38)–(A.39). As f is strictly positive over (0, 1), we have f(t∗∗L ) > 0 and, as argued in Case

1, f(t∗∗LH) > 0. The first-order conditions (A.35)–(A.36) then rewrite as

pLβL(thL − t∗∗L ) + ζ∗∗(t∗∗L − taH) = 0, (A.48)
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pHβH(thH − t∗∗LH)− ζ∗∗(t∗∗LH − taH) = 0. (A.49)

We must have ζ∗∗ > 0 and, hence, by (A.37), (A.31) must be binding, for, otherwise, by

(A.48)–(A.49), we would have t∗∗LH = thH and t∗∗L = thL, so that the individually unconstrained-

optimal mechanisms for types H and L would be simultaneously implementable, a contradiction.

That is, (t∗∗LH , t
∗∗
L ) must satisfy ∫ t∗∗L

t∗∗LH

(θ − taH)f(θ) dθ = 0. (A.50)

Because t∗∗L > t∗∗LH by Step 1, it follows that the bracketed terms on the left-hand sides of

(A.48)–(A.49) cannot be zero. Dividing yields

pHβH
pLβL

t∗∗LH − thH
t∗∗L − thL

=
taH − t∗∗LH
t∗∗L − taH

. (A.51)

Step 4 To complete the proof, we only need to delineate the circumstances under which each

of the cases discussed in Step 3 arises. In each case, (A.31) is binding, see (A.40), (A.46), and

(A.50). Let accordingly

TL ≡ {tL ≥ t∗L : there exists tH ≤ tL such that E[θ | tH ≤ θ < tL] = taH}. (A.52)

Because t∗L > taH and E[θ | t∗H ≤ θ < t∗L] < taH as the individually optimal mechanisms with

cutoffs t∗H and t∗L are not simultaneously implementable, t∗L ∈ TL. Because E[θ | tH ≤ θ < tL]

is strictly increasing in tH and tL, TL is thus an interval [t∗L, sup TL], and there exists a unique

strictly decreasing function t̂LH : TL → [0, taH) implicitly defined by

E[θ | t̂LH(tL) ≤ θ < tL] = taH (A.53)

for all tL ∈ TL. By (A.40), (A.46), and (A.50), given t∗∗L , t∗∗LH is uniquely pinned down by

t∗∗LH = t̂LH(t∗∗L ). (A.54)

As f is strictly positive over (0, 1), a straightforward application of the implicit function theorem

implies that t̂LH is differentiable over the interior of TL, with

t̂′LH(tL) = − f(tL)

f(t̂LH(tL))

tL −E[θ | t̂LH(tL) ≤ θ < tL]

E[θ | t̂LH(tL) ≤ θ < tL]− t̂LH(tL)
< 0. (A.55)

While (A.54) holds in each of Cases 1, 2, and 3, these cases differ as to whether (A.43), (A.47),

or (A.51) holds. Defining accordingly

κ(tL) ≡ pHβH
pLβL

t̂LH(tL)− thH
tL − thL

−
taH − t̂LH(tL)

tL − taH
, (A.56)

we have κ(t∗L) ≤ 0, κ(1) ≥ 0, and κ(t∗∗L ) = 0 in Cases 1, 2, and 3, respectively. To conclude, we
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only need to show that these cases are mutually exclusive. For this, we only need to show that

κ crosses zero only once, from above. Indeed, if κ(tL) = 0, then

κ′(tL) =
pHβH
pLβL

[
t̂′LH(tL)

tL − thL
−
t̂LH(tL)− thH

(tL − thL)2

]
+
t̂′LH(tL)

tL − taH
+
taH − t̂LH(tL)

(tL − taH)2

< − pHβH
pLβL

t̂LH(tL)− thH
(tL − thL)2

+
taH − t̂LH(tL)

(tL − taH)2

=
[taH − t̂LH(tL)](taH − thL)

(tL − thL)(tL − taH)2

< 0, (A.57)

where the first inequality follows from (A.55), the second equality follows from (A.56) along

with κ(tL) = 0, and the second inequality follows from Assumption 2. Thus Case 1 occurs if

and only if κ(t∗L) ≤ 0, so that κ(tL) < 0 for all tL > t∗L, Case 2 occurs if and only if κ(1) ≥ 0, so

that κ(tL) > 0 for all tL < 1, and Case 3 occurs if and only if κ(t∗L) > 0 and κ(1) < 0, so that

κ(tL) changes sign from positive to negative only at tL = t∗∗L . The result follows. �

Proof of Corollary 4. The proof consists of three steps.

Step 1 Consider first the boundary p, starting with the case t∗L > thL. Define the function

t̂LH as in (A.53). By Assumption 2, t∗L > taH , and, by construction, t̂LH(t∗L) < taH . Moreover,

because the individually optimal mechanisms with cutoffs t∗H and t∗L are not simultaneously

implementable, t̂LH(t∗L) > t∗H and thus t̂LH(t∗L) > thH . Hence

βH
βL

t̂LH(t∗L)− thH
t∗L − thL

> 0 and
taH − t̂LH(t∗L)

t∗L − taH
> 0.

As p 7→ p
1−p is a strictly increasing continuous mapping from (0, 1) to (0,∞), there exists a

unique p ∈ (0, 1) such that

pβH

(1− p)βL
t̂LH(t∗L)− thH
t∗L − thL

=
taH − t̂LH(t∗L)

t∗L − taH
,

so that

pHβH
pLβL

t̂LH(t∗L)− thH
t∗L − thL

≤
taH − t̂LH(t∗L)

t∗L − taH
if and only if pH ∈ [0, p]. Defining κ as in (A.56), we thus have κ(t∗L) ≤ 0 for any such pH . It

then follows from Step 4 of the proof of Lemma 3 that (t∗∗LH , t
∗∗
L ) = (t̂LH(t∗L), t∗L). We have thus

proven that, if t∗L > thL, there exists p ∈ (0, 1) such that, for all pH ∈ (0, p], type L faces his

individually optimal mechanism. To complete the proof, we only need to check that if t∗L = thL

and type L faces his individually optimal mechanism, so that t∗∗L = t∗L = thL, then it must be

that pH = 0, in which case we can set p ≡ 0 by convention. Indeed, from (A.41) in Case 1 of

the proof of Lemma 3, if we impose the constraint (A.31), which is relevant only if pH > 0, then

ζ∗∗ > 0, and t∗∗L = t∗L implies t∗L > thL. Thus t∗∗L = t∗L = thL implies pH = 0, as desired.
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Step 2 Consider next the boundary p, starting with the case t∗H > thH . Then

βH
βL

t∗H − thH
1− thL

> 0 and
taH − t∗H
1− taH

> 0.

As p 7→ p
1−p is a strictly increasing continuous mapping from (0, 1) to (0,∞), there exists a

unique p ∈ (0, 1) such that

pβH
(1− p)βL

t∗H − thH
1− thL

=
taH − t∗H
1− taH

,

so that

pHβH
pLβL

t∗H − thH
1− thL

≥
taH − t∗H
1− taH

if and only if pH ∈ [p, 1]. Defining κ as in (A.56), we thus have κ(1) ≥ 0 for any such pH .

It then follows from Step 4 of the proof of Lemma 3 that (t∗∗LH , t
∗∗
L ) = (t∗H , 1). We have thus

proven that, if t∗H > thH , there exists p ∈ (0, 1) such that, for all pH ∈ [p, 1), type H faces his

individually optimal mechanism. To complete the proof, we only need to check that if t∗H = thH

and type H faces his individually optimal mechanism, so that t∗∗LH = t∗H = thH , then it must be

that pH = 1, in which case we can set p ≡ 1 by convention. Indeed, from (A.44) in Case 2 of

the proof of Lemma 3, t∗H = thH implies ζ∗∗ = 0. Because t∗∗LH = t∗H implies t∗∗L = 1, (A.45)

implies pL = 0, as desired.

Step 3 According to Steps 1–2,

pHβH
pLβL

t̂LH(t∗L)− thH
t∗L − thL

>
taH − t̂LH(t∗L)

t∗L − taH
and

pHβH
pLβL

t∗H − thH
1− thL

<
taH − t∗H
1− taH

if and only if pH ∈ (p, p). Defining κ as in (A.56), we thus have

κ(pH , t
∗∗
L ) =

pHβH
(1− pH)βL

t̂LH(t∗∗L )− thH
t∗∗L − thL

−
taH − t̂LH(t∗∗L )

t∗∗L − taH
= 0 (A.58)

for any such pH , where we make the dependence of κ on pH explicit. It then follows from Step

4 of the proof of Lemma 3 that (t∗∗LH , t
∗∗
L ) is the unique solution to (26). Let us accordingly

denote by t̂L(pH) the unique solution to (A.58). We clearly have DpHκ(pH , tL) > 0 and, from

(A.57), DtLκ(pH , tL) < 0 if κ(pH , tL) = 0. A straightforward application of the implicit function

theorem then implies that t̂L is differentiable over (p, p), with t̂′L > 0. Summarizing, because,

for each pH ∈ (p, p),

(t∗∗LH , t
∗∗
L ) = (t̂LH(t̂L(pH)), t̂L(pH)),

where t̂LH is strictly decreasing over the interval TL by (A.55), the probabilities F (t̂LH(t̂L(pH)))

and F (t̂L(pH)) that type H and type L consume, respectively, are strictly decreasing and strictly

increasing in pH ∈ (p, p), respectively. Hence the result. �
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Proof of Proposition 4. By Proposition 3, if Assumption 2 holds, then there exists an

optimal IC joint mechanism of the form (27) with t∗∗L = 1. Suppose then that Assumption 2

does not hold. The result is immediate if we are in Case 1 or Subcases 2.1–2.3 of Lemma A.5;

note, incidentally, that we can be in Subcase 2.2, which, according to Lemma 3, cannot arise

under Assumption 2. There remains to consider Subcase 2.4 of Lemma A.5, in which the affine

function h∗∗ is identically zero over (t∗∗LH , 1).

Case 1 We first assume that taH > thL. Then, by arguments already invoked, λ∗∗ > 0 and,

by (A.25), any solution π∗∗L to (A.17) must satisfy (A.26) and∫ 1

t∗∗LH

θ[1− π∗∗L (θ)]f(θ) dθ = taL

∫ 1

t∗∗LH

[1− π∗∗L (θ)]f(θ) dθ. (A.59)

Notice that, because Lemma A.4 guarantees that a solution π∗∗L to (A.17) exists, there exists

a solution to (A.26) and (A.59). Conversely, because h∗∗ is identically zero over (t∗∗LH , 1), any

solution to (A.26) and (A.59) is a solution to the maximization condition (A.24) and, hence, to

(A.17) as this is a convex problem and η∗∗ > 0 (Clarke 2013, Exercise 9.7). Let us then fix a

solution π∗∗L to (A.26) and (A.59). We focus with no loss of generality on the case where π∗∗L

is not equal to 0 or to 1, P-almost surely over (t∗∗LH , 1); otherwise, we are back to Subcases 2.1

or 2.2 of Lemma A.5. That is, we focus on the case where both constraints (16) and (18) in

(A.13) are well-defined and binding. In particular, we must have

t∗∗LH < taH < E[θ |θ ≥ t∗∗LH ] < taL. (A.60)

Summing (A.26) and (A.59) and rearranging, we obtain that any solution to (A.26) and (A.59)

satisfies∫ 1

t∗∗LH

[1− π∗∗L (θ)]f(θ) dθ = ρ ≡
E[θ |θ ≥ t∗∗LH ]− taH

taL − taH
[1− F (t∗∗LH)] < 1− F (t∗∗LH). (A.61)

We claim that, in line with (27), there exists a solution to (A.26) and (A.59) of the form

π∗∗L (θ) = 1{t∗∗LH≤θ<t
∗∗
L } + 1{θ≥t∗∗L }

for some cutoffs t∗∗L > t∗∗L > t∗∗LH . To prove this claim, we show that the system in (t, t)∫ t

t
θf(θ) dθ = taL[F (t)− F (t)] (A.62)∫ t

t∗∗LH

θf(θ) dθ +

∫ 1

t
θf(θ) dθ = taH [F (t)− F (t∗∗LH) + 1− F (t)], (A.63)

has a unique solution. As above, summing (A.62)–(A.63) yields

F (t)− F (t) = ρ, (A.64)
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and, hence, (A.62) rewrites as

ψ(t) ≡

∫ F−1(F (t)+ρ)
t θf(θ) dθ

ρ
= E[θ | t ≤ θ < F−1(F (t) + ρ)] = taL,

which we must solve for t ∈ (t∗∗LH , F
−1(1 − ρ)]. By the intermediate value theorem, we only

need to check that ψ(t∗∗LH) < taL, that ψ is strictly increasing over (t∗∗LH , F
−1(1 − ρ)], and that

ψ(F−1(1− ρ)) ≥ taL. The first statement follows from

ψ(t∗∗LH) = E[θ | t∗∗LH ≤ θ < F−1(F (t∗∗LH) + ρ)] < E[θ |θ ≥ t∗∗LH ] < taL,

where the first inequality follows from the fact that F (t∗∗LH) + ρ < 1 by (A.64) and that P has

full support over [0, 1], and the second inequality follows from (A.60). The second statement

follows from a straightforward computation,

ψ′(t) =
f(t)[F−1(F (t) + ρ)− t]

ρ
> 0.

The third statement amounts to ∫ 1
F−1(1−ρ) θf(θ) dθ

ρ
≥ taL. (A.65)

But we know that there exists a solution to (A.26) and (A.59), which satisfies

taL =

∫ 1
t∗∗LH

θ[1− π∗∗L (θ)]f(θ) dθ∫ 1
t∗∗LH

[1− π∗∗L (θ)]f(θ) dθ
=

∫ 1
t∗∗LH

θ[1− π∗∗L (θ)]f(θ) dθ

ρ

by (A.61), and clearly∫ 1

F−1(1−ρ)
θf(θ) dθ = max

{∫ 1

t∗∗LH

θ[1− πL(θ)]f(θ) dθ :

∫ 1

t∗∗LH

[1− πL(θ)]f(θ) dθ = ρ

}
,

which yields the desired inequality (A.65). The claim follows. In case (A.65) holds as an

equality, we have t∗∗L = 1, and π∗∗L has the same form as in Subcase 2.3 of Lemma A.5.

Case 2 The proof for the limiting case taH = thL or, equivalently, βH = βnoH (βL), relies on a

simple continuity argument. From the proof of Lemma A.4, for each βH ≥ βnoH (βL), any solution

to (A.13) for βH can be represented by a pair (t∗∗LH(βH), π∗∗L (βH)) ∈ [0, 1] × BL∞(P). Consider

a strictly decreasing sequence (βH,n)n∈N converging to βnoH (βL). By Berge maximum theorem

(Aliprantis and Border 2006, Theorem 17.31) along with the fact that BL∞(P) is metrizable

as L1(P) is separable (Aliprantis and Border 2006, Theorems 6.30 and 13.16), any sequence

((t∗∗LH(βH,n), π∗∗L (βH,n)))n∈N of solutions to (A.13) for each term of the sequence (βH,n)n∈N has

a subsequence that converges in [0, 1] × BL∞(P) to a solution (t∗∗LH(βnoH (βL)), π∗∗L (βnoH (βL))) to

(A.13) for βnoH (βL). We can with no loss of generality assume that this sequence converges. For

each n ∈ N, we have βH,n > βnoH (βL) and, hence,

π∗∗L (βH,n)(θ) = 1{t∗∗LH(βH,n)≤θ<t∗∗L (βH,n)} (A.66)
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by Subcases 2.1–2.3 of the proof of Lemma A.5. Therefore,∫
π∗∗L (βnoH (βL))(θ)P(dθ) = lim

n→∞

∫
π∗∗L (βH,n)(θ)P(dθ)

= lim
n→∞

F (t∗∗L (βH,n))− F (t∗∗LH(βH,n))

= lim
n→∞

F (t∗∗L (βH,n))− F (t∗∗LH(βnoH (βL))), (A.67)

where the first equality follows from the fact that the sequence (π∗∗L (βH,n))n∈N converges in

BL∞(P) to π∗∗L (βnoH (βL)), using the definition of the weak∗ topology σ(L∞(P), L1(P)), the

second equality follows from (A.66), and the third inequality follows from the fact that the

sequence (t∗∗LH(βH,n))n∈N converges to t∗∗LH(βnoH (βL)) in [0, 1] and that F is continuous as P

is nonatomic. Because F is strictly increasing as P has full support, (A.67) implies that the

sequence (t∗∗L (βH,n))n∈N converges to some limit t∞. To complete the proof, notice that, for any

Borel subset A of [0, 1],∫
A
π∗∗L (βnoH (βL))(θ)P(dθ) = lim

n→∞

∫
A
π∗∗L (βH,n)(θ)P(dθ)

= lim
n→∞

P[A ∩ (t∗∗LH(βH,n), t∗∗L (βH,n)]], (A.68)

using again the definition of the weak∗ topology σ(L∞(P), L1(P)) along with (A.66). Finally,

we can substitute A = (t∗∗LH(βnoH (βL)), t∞] and A = (t∞, 1] in (A.68) and use the fact that the

sequence ((t∗∗LH(βH,n), t∗∗L (βH,n)))n∈N converges to (t∗∗LH(βnoH (βL)), t∞) to conclude that in fact

t∞ = t∗∗L (βnoH (βL)) and

π∗∗L (βnoH (βL))(θ) = 1{t∗∗LH(βnoH (βL))≤θ<t∗∗L (βnoH (βL))}

up to a P-null set. Hence the result. �

Proof of Proposition 5. The proof consists in transforming our model into one to which the

results of Kolotilin et al. (2017) can be adapted, and then to apply those results to characterize

the optimal mechanism.

First, because the date-0 and date-1 selves share the same β and the same information

about θ, the optimal consumption decisions x0 and x1 must coincide in our model, x0 = x1 = x.

Second, we may identify the receiver as each self of the DM, with decision utility

u ≡ x(1− βδ2Cθ) = x

(
ta − θ
ta

)
,

and the sender as the mechanism designer, with intertemporal utility

v ≡ x[1 + βδ − (1 + δ)βδ2Cθ] = −x(1− β)δ + (1 + δ)u.

Because a high action is good for high types in Kolotilin et al. (2017) and is denoted by a, we
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let a ≡ 1− x stand for abstention, and rewrite these utilities as

u ≡ a
(
θ − ta

ta

)
+
ta − θ
ta

and

v ≡ a(1− β)δ + (1 + δ)u− (1− β)δ.

Any summand that does not depend on a does not enter any of the relevant optimization

problems, and thus may be dropped without loss of generality. Similarly, the multiplicative

factor 1
ta does not affect the receiver’s optimization problem, and can be omitted from its

objective function u. However, as the sender does not know ta, we cannot omit the multiplicative

factor 1
ta from her objective function v without implicitly changing the weight she puts on each

private type.4 We instead rescale v with a multiplicative factor 1 + δ. With a slight abuse of

notation, we continue to denote the resulting transformed utilities by u and v, and obtain

u(a, θ, ta) ≡ a(θ − ta) and v(a, θ, ta) ≡ aρ(ta) +
u(a, θ, ta)

ta
, (A.69)

where

ρ(ta) ≡ δ

1 + δ
(1− β) =

δ

1 + δ

(
1− t0

ta

)
.

These final expressions depend on β only through ta. Now, the only differences with the

persuasion problem studied in Kolotilin et al. (2017) are that ta is distributed on [t0, 1] rather

than on [0, 1], and that there is an additional factor ρ(ta) in the first summand of v(a, θ, ta).

The following result is a modification of their Lemma 2, accounting for these changes.

Lemma A.6 For every IC mechanism x, let Ux(ta) and V x(ta) be the receiver’s and the

sender’s expected interim utilities induced by x, respectively. Then the sender’s expected utility

is given by ∫ 1

t0

V x(ta) dH(ta) =

∫ 1

t0

Ux(ta)J(ta) dta, (A.70)

where J(ta) ≡ (ρh)′(ta) + h(ta)
ta .

Proof. Define, for each ta ∈ [t0, 1],

ṽ(a, θ, ta) ≡ v(a, θ, ta)

ρ(ta)
= a+

u(a, θ, ta)

ρ(ta)ta
, h̃(ta) ≡ ρ(ta)h(ta)

Z
, and ρ̃(ta) ≡ 1

ρ(ta)ta
,

where

Z ≡
∫ 1

t0

h(ta)ρ(ta) dta

4Indeed, Lemma A.6 below accounts for this problem by appropriately rescaling the density h.
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is a normalizing constant that makes h̃ a density over [t0, 1]. The reparameterized model written

in terms of u, ṽ, h̃ and ρ̃ is such that we can apply Kolotilin et al. (2017, Lemma 2) to obtain∫ 1

t0

V x(ta) dH(ta) = Z

∫ 1

t0

Ṽ x(ta)h̃(ta) dta = Zh̃(t0)E[θ] +

∫ 1

t0

Ux(ta)ZJ̃(ta) dta, (A.71)

where J̃(ta) ≡ h̃′(ta) + ρ̃(ta)h̃(ta) for all ta ∈ [t0, 1]. The first term on the right-hand side of

(A.71) is zero as ρ and, hence, h̃ vanish at t0 = 1
δ2C

, while the second term can be rewritten

using

ZĨ(ta) = Z

[
h̃′(ta) +

h̃(ta)

ρ(ta)ta

]
= (hρ)′(ta) +

h(ta)

ta
,

which implies (A.70). The result follows. �

To derive an optimal mechanism, it is key to understand the sign pattern of the function

J defined in Lemma A.6. The following result provides sufficient conditions for J to be either

always nonnegative or to cross zero at most once, from above.

Lemma A.7 Suppose that h is log-concave with h′(t0) > 0. Then, either J is nonnegative over

[t0, 1], or there exists t1 ∈ (t0, 1) such that J(t1) = 0 and J(t) ≷ 0 if t ≶ t1. The latter case

obtains if h(1) = 0 and h′(1) < 0.

Proof. A direct computation yields

J(ta) = h(ta)

[
1

ta
+

1

(1 + δ)δC(ta)2
+

δ

1 + δ

(
1− t0

ta

)
h′(ta)

h(ta)

]
. (A.72)

Clearly, if h′(t0) > 0, then J > 0 in an open right-neighborhood of t0. Similarly, if h(1) = 0 and

h′(1) < 0, then J(1) < 0. In the latter case, the existence of a t1 ∈ (t0, 1) such that J(t1) = 0

follows from the intermediate value theorem. To conclude the proof, it thus remains to show

that there can be at most one t1 ∈ (t0, 1) such that J(t1) = 0. We need to ensure that the term

in square brackets in (A.72) crosses zero at most once, from above. Rearranging the condition

that this term equal zero yields

−h
′(ta)

h(ta)
=

(1 + δ)ta + 1
δC

δta(ta − t0)
. (A.73)

Because h is log-concave, the left hand-side of (A.73) is nondecreasing. Thus, because the

right-hand side of (A.73) is strictly decreasing, we obtain that (A.73) can have at most one

solution over (t0, 1). The result follows. �

By Kolotilin et al. (2017, Theorem 1), the receiver’s utility profile Ux is implementable by

a mechanism x if and only if Ux is a convex function that lies between his utility profiles from

full information and no information. With no information, the receiver abstains if and only if
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E[θ] ≥ ta, in which case he obtains (abstention) utility E[θ] − ta. His utility profile from no

information is thus given by U(ta) ≡ max{E[θ] − ta, 0}. With full information, the receiver

abstains if and only if θ ≥ ta, in which case he obtains (abstention) utility θ − ta. His utility

profile from full information is thus given by U(ta) ≡ [1 − F (ta)]E[θ − ta | θ ≥ ta]. Clearly, U

and U are nonincreasing convex functions that satisfy U ≤ U , U(t0) = U(t0), and U(1) = U(1).

Designing the optimal mechanism boils down to finding a convex function Ux that maximizes

the right-hand side of (A.70) subject to the constraint U ≤ Ux ≤ U .

To complete the proof, we follow Kolotin et al. (2017, Section 4.2), in particular the

discussion below their Theorem 2 and their Example 1, which treats the case where J switches

signs at most once, from positive to negative. They argue that the optimal utility profile Ux must

be piecewise linear wherever it does not coincide with the upper bound U . If J is everywhere

nonnegative, the optimal Ux satisfies Ux = U , so that a full-information signal is optimal. If J

switches sign once, from positive to negative, they show that there exists t̃ ∈ (t0, 1] such that

the optimal Ux satisfies Ux(ta) = U(ta) for ta ≤ t̃. For ta > t̃, Ux1 continues as a tangent, that

is, it is piecewise linear with slope U ′(t̃) until it hits U , after which it coincides with U . This

choice of Ux corresponds to a mechanism that fully discloses each θ < t̃, whereas all θ ≥ t̃ are

pooled into a red warning. As a result, DMs with high self-control, ta ≤ t̃, consume whenever

it is optimal for them to do so. DMs with intermediate self-control, ta ∈ (t̃,E[θ |θ ≥ t̃]], abstain

from consuming whenever they observe a red warning, which leaves them to abstain more often

than under full information. Finally, DMs with ta > E[θ |θ ≥ t̃] have so little self-control that

they always consume and obtain (abstention) utility 0. Hence the result. �
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