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a b s t r a c t

In an independent, private values, second-price auction with entry fees we discuss the way in which
a seller should optimally spread costly information among the bidders. We find that marginal gross
revenues do not generally behave monotonically in total information release. In the two bidder case,
essentially, any asymmetric allocation of information dominates the symmetric information allocation.
Even the bidder who gets less information is willing to pay a higher entry fee for asymmetric information
allocations than for the symmetric one. His entry fee coincides with that of the better informed bidder.
Losses from allocating an amount of information non-optimally can be substantial.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Consider different firms competing in a takeover auction. They
are all interested in the target, but not for the same reasons: Bidder
A is interested in the clients list of the target. Bidder B is more
focused on possible synergies to reduce production costs. Firm C is
in need of the target’s know-how. Most likely, it is not easy to get
information on any of these aspects. Should the target be willing
to open its books, show the client list, give the bidders access to its
production processes? It is reasonable to assume that informing
the bidders causes the target firm some costs—at least, revealing
information takes costly time. Furthermore, it is likely that every
bidder asks specific questions and has to be monitored while
searching through the target. This leads to the main question:
Howmuch information should be given to the different bidders in
order to maximize the auction’s revenue if revealing information
is costly?

To consider questions of this type we need a model that
allows for giving out different amounts of information to different
bidders. We consider the following setting: Each aspect a bidder
is interested in about the target is wrapped in an information
package. The seller (e.g. the target itself) possesses all these
information packages. Yet giving out packages is costly, and so the
seller will usually not give out all packages. In case if a bidder does
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not get one of his desired information packages, he sticks to his
commonly known prior about this aspect of the target. The seller
does not know what the information in the packages means to the
bidders. He only takes into account that giving out more packages
means that bidders will be better informed in the auction (so that
they bid higher with some probability).

We assume that the seller can sell his information by charging
ex ante entry fees from the bidders. Therefore, the seller can extract
all expected surplus on the side of the bidders. Accordingly, the
seller’s problem is equivalent to maximizing social welfare and
all our results on optimal allocations also apply to the problem of
welfare maximization.

We find that with two bidders, allocating packages symmetri-
cally is dominated by most asymmetric allocations. For example,
concentrating all packages at one bidder always generates aweakly
higher payoff than splitting up the same amount of information
equally. For the n bidder case, such a general statement is not true.
Yet we will also give examples where the restriction to symmet-
ric information allocations leads to substantial reductions in the
seller’s revenue for the n bidder case.

With two bidders, both bidders are willing to pay the same
maximum fee for the release of more packages—no matter how
asymmetrically these packages will be allocated. Thus a bidder
who is still uninformed is willing to pay a higher fee for additional
information given to the other bidder than for receiving this
amount of information himself.

Our study is related to some recent work on information
acquisition and mechanism design. In particular, there are some
other papers dealing with independent private values auctions
where the seller chooses the degree to which he informs the
bidders: Bergemann and Pesendorfer (2007) consider the case of
no entry fees and no information costs. Esö and Szentes (2007)
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allow for entry fees, but rule out information costs. Ganuza and
Penalva (2010) rule out entry fees, but allow for information
costs. Our study addresses the fourth case where entry fees can
be charged and information costs are present. Esö and Szentes
show an extraction-of-surplus result which is more general than
ours as it allows for preliminary information on the side of the
bidders. As informing the bidders is not costly to their seller, he
will give out all the information he has. This is in contrast to our
framework, where the seller has to face the trade-off between
additional rents due to information revelation and additional
costs. Hoffmann and Inderst (2009) generalize the results of Esö
and Szentes (2007) to a setting where giving out information
is costly. Their analysis is restricted to the case where there is
only one bidder. In Ganuza and Penalva, the seller is restricted
to inform the bidders symmetrically. Thus, our main question of
how to allocate information optimally cannot be addressed in
their framework. Bergemann and Pesendorfer (2007) consider a
wide class of information structures and find that the information
structure in the revenue-maximizing mechanism treats bidders
asymmetrically. Hagedorn (2009) further explores the optimality
of asymmetric over symmetric information structures in the same
setting.

Szech (2010) also discusses the question of how to allocate
information among bidders but in a simpler model of information
release. In that setting, it holds that the seller optimally allocates
information as asymmetrically as possible under weak conditions.
The asymmetry results of the present study are stronger in the
sense that the present model explicitly allows for effects such
as cancelation between good and bad news through the release
of additional information. It is weaker in the sense that only
suboptimality of symmetric information policies holds. Thus the
two papers complement each other.

There is also a literature on auction environments with costly
information acquisition by the bidders. This includes Persico
(2000), Bergemann andVälimäki (2002), Compte and Jehiel (2007),
Bergemann et al. (2009), Shi (2011) and Crémer et al. (2009).
Crémer et al. (2009) is closest to our study: They also consider
a revenue-maximizing seller who can charge entry fees in an
independent private values model and prove a full-extraction of
expected surplus result.

All the papers which assume that better information can be
acquired at a higher cost face the problem of how to model
information which is, both, more valuable and more costly. The
simplest approach, taken, e.g., by Compte and Jehiel (2007),
Vagstad (2007), Crémer et al. (2007); Crémer et al. (2009), and
Bergemann et al. (2009) is to assume that each bidder either
stays completely uninformed or learns his valuation perfectly.
In Hoffmann and Inderst (2009) and Szech (2010), the seller
chooses probabilities with which each bidder learns his valuation
perfectly. Other papers utilize more sophisticated models to allow
for partial release of information: Persico (2000) and Bergemann
andVälimäki (2002) order the cost of informative signals according
to the signal’s effectiveness (also known as accuracy), a concept
which goes back to Lehmann (1988). Ganuza and Penalva (2010)
and Shi (2011) introduce new classes of orders to rank the
informativeness of signals based on different stochastic orders.

Our information packagemodel of Section 3 takes an intermedi-
ate approach, allowing for a partial release of information but stay-
ing comparably simple and thus tractable: Each bidder’s valuation
is assumed to be the sum of m i.i.d. random variables (m packages
of information). The seller decides how many packages he wants
to reveal to each bidder at costs which depend on the total number
of packages released. As discussed at the end of Section 3, this ap-
proach allows us not only to have an ordinal ranking (as in stochas-
tic order approaches), but also to have a cardinal measure of how
much information the bidders get.
Note that the comparative simplicity of our model does not
necessarily imply that it is a less accurate description of the
decision problem which, e.g., the seller of a house might face: Is
such a seller really able to let bidder 1 learn whether his valuation
for the house is above or below 50,000 $ (and nothing else) and
bidder 2 whether his valuation is above or below 200,000 $? Yet
this is only a small fraction of the powerwhich the seller possesses,
e.g., in the setting of Bergemann and Pesendorfer (2007). Thinking
of such practical examples it becomes natural to study the decision
problem of a seller whose power does not go beyond an imperfect
control of the amount of information transmitted to each bidder.

The paper is organized as follows: Section 2 introduces the
model and analyzes which entry fees the bidders are maximally
willing to pay depending on how much information is given
out. Section 3 – the main part which is also technically the
most interesting section of this study – focuses on the two
bidder case where information is spread over several packages.
Section 4 briefly discusses the case of more than two bidders.
Section 5 concludes. All proofs, including the calculations behind
the examples, are in Appendix.

2. The model

A seller sells one indivisible object for which his valuation is
zero via a second-price auction. There are n risk-neutral bidders
with independent (but not necessarily identically distributed)
valuations X1, . . . , Xn with expected values µ1, . . . , µn.1 The
bidders do not know their valuations initially. The seller offers
against entry fees to give to each bidder i a certain amount of
information (represented by a σ -algebra Fi) such that each bidder
can calculate an estimate Xi = E[Xi|Fi] of his valuation. Each
bidder only receives information on his own type, but not on the
other bidders’ valuations. LetX (1) andX (2) be the two highest order
statistics among these estimates.

The precise timing of the model is as follows: First, the seller
announces individual entry fees to each bidder. He commits to
giving out an information structure (describing which bidder will
get how much information) and commits also to excluding all
bidders that refuse to pay. Second, the bidders decide if they
want to pay their fee. Third, the bidders who have paid get their
information. Fourth, all bidders who have paid participate in the
second-price auction.Without loss of generality, ties in the auction
are broken with equal probability.

Throughout the paper, we assume that the bidders stick to
their weakly dominant strategy of bidding the best estimate they
have of their valuations. We assume that giving information to the
bidders is costly to the seller. We will, however, not specify this
assumption before the next sections when we further restrict the
Fi. In Proposition 1, we calculate the entry feeswhich the seller can
maximally charge such that bidders still participate.

Proposition 1. If the seller offers to release the information sets
(F1, . . . , Fn), each bidder i is willing to pay an entry fee of

ei = E[(Xi −X (2))1{i wins}] = E[(X (1)
−X (2))1{i wins}].

This leads to a gross expected revenue for the seller of E[X (1)
].

1 For convenience, it is assumed throughout the paper that all random variables
are not almost surely constant. Without this assumption, all arguments still go
through but some strict inequalities hold only weakly. We also assume that all
random variables are L1 integrable, i.e. E[| · |] < ∞.
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Thus the seller can extract all surplus from releasing more
information, and this is an optimal selling mechanism in this
framework. Note that, by Jensen’s inequality and the convexity of
the maximum, it follows that E[X (1)

] ≥ E[X (1)
]. Therefore, in the

absence of costs, the seller prefers to release as much information
as possible such that the bidders learn the realizations of their
valuations Xi exactly.

With only two bidders, both bidders’ entry fees coincide if they
have the same prior estimates of their valuations µ1 = µ2:

Proposition 2. Consider the setting of the previous proposition but
with n = 2. Assume µ1 ≥ µ2. Then bidder 1 pays

e1 =
1
2
E[|X1 −X2|] +

1
2
(µ1 − µ2)

and bidder 2 pays

e2 =
1
2
E[|X1 −X2|] −

1
2
(µ1 − µ2).

Thus we see that the difference in entry fees between the two
bidders always equals the difference in priors µ1 − µ2. This does
not change even if one bidder gets much more information than
his competitor. The reason is that more information can raise a
bidder’s valuation; but it can lower it as well, thus reducing the
competition in favor of the other bidder: With two bidders, good
news to the first bidder translate one-to-one into bad news to the
second bidder. Withmore than two bidders, such a simple relation
does not hold anymore.

Accordingly, in the setting with two bidders and a welfare-
maximizing seller who does not set entry fees, the proposition
shows that both bidders earn the same expected payoff, no matter
how asymmetrically information is allocated.

3. The two bidder case

In this section, we consider a more concrete model of informa-
tion release which is rich enough to capture the following deci-
sion of the seller: The seller may inform bidders asymmetrically
although he could spread the same amount of information evenly
as well. We will focus on the two bidder case and illustrate what
changes with more bidders in the next section.

We now assume two bidders who have valuations X1+· · ·+Xm
and Y1 + · · · + Ym where X1, . . . , Xm, Y1, . . . , Ym, the packages of
information, are i.i.d. random variables with distribution function
F and mean µ. Each package represents an independent privately-
valued aspect of the object for sale. The revenue-maximizing seller
decides howmany packages each bidder should get. The seller has
a cost of c per revealed package.

FromPropositions 1 and2,we know that if for some k, j ≤ m the
seller reveals X1, . . . , Xk and Y1, . . . , Yj, his expected gross revenue
is

E[max(X1 + · · · + Xk + (m − k)µ, Y1 + · · · + Yj + (m − j)µ)] (1)

and each bidder pays an entry fee of

e1 = e2 =
1
2
E[|X1 + · · · + Xk − Y1 − · · · − Yj + (j − k)µ|]. (2)

Then Proposition 3 shows that the seller prefers to give a
fixed number of packages to one bidder, leaving the other bidder
uninformed. Splitting up the packages evenly among the two
bidders would give him lower revenues:

Proposition 3. (1) Assume 2k ≤ m packages are to be allocated by
the seller. If the distribution of the packages is asymmetric around the
mean, it is strictly more profitable to concentrate the 2k packages of
information at one bidder than to split them equally between the two
bidders.

(2) Assume j ≤ 2m packages are to be allocated by the seller. If
the distribution of packages is symmetric around themean, the seller’s
revenue does not depend on how the packages are allocated.

Note that the proposition implies that a biddermay pay a higher
fee for an additional package given to the other bidder than for
receiving this information package himself.

The proof of Proposition 3 relies on the fact that for i.i.d. random
variables X and Y

E[|X + Y |] ≥ E[|X − Y |] (3)

with equality if and only if the distribution of X and Y is symmetric
around the mean. This result is found, for instance, in Jagers et al.
(1995). It is already plausible from (2), the formula for the entry
fees, that such a formula is useful for the proof: Shifting packages
from bidder 1 to bidder 2 translates into turning plus signs into
minus signs in the formula. Note that in the two bidder case,
maximizing the difference between the higher and the lower order
statistic (which is twice the entry fee) is equivalent to maximizing
the higher order statistic.

Exploiting (3) a little more, we can generalize Part 1 of
Proposition 3 as follows:

Proposition 4. Assume 2k < 2m packages are to be allocated and
the distributions are asymmetric. Then any split-up of the type (2l, 2h)
where l > h and l+h = k leads to a higher revenue for the seller than
(k, k).

To illustrate the proposition, consider the following example:
Assume the seller wants to give out six packages in total. Then
he should not give three packages to each bidder, but rather give
four or six packages to one bidder. However, the proposition does
not make a statement about giving five packages to one bidder
and one package to the other bidder. Despite this obstacle (which
does not seem to be easy to remove except in the case where
each package can be rewritten as a sum of two i.i.d. random
variables2), Proposition 4 says that splitting up information evenly
is, essentially, the least profitable decision the seller can take.

Two effects drive the result: First, concentrating packages at
one bidder may lead to a very high interim valuation of that
bidder (e.g. if all packages he receives contain good news). Such
a high interim valuation can never occur if the seller instead splits
the total amount of packages evenly among the bidders. Second,
giving all packages to one bidder makes sure that the other bidder,
who receives no package, has an interim valuation of mµ. Thus
the first order statistic of the interim valuations, which our seller
wants to maximize, cannot get smaller than mµ. This insurance
effect also has some power if a bidder receives not none, but few
packages, and becomes less important when more bidders take
part in the auction (as it is then unlikely that the first order statistic
becomes small). Yet with few bidders, the insurance aspect of
leaving bidders completely or nearly uninformed plays a crucial
role.

We have seen that the splitting up of information equally is
definitely not optimal. But which information policy is revenue-
maximizing? Is concentrating all information at one bidder
optimal in this sense? The answer can depend sensitively on the
distribution F as we can see in the following example:

2 This is possible for instance for infinitely divisible probability distributions like
the exponential distribution.
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Fig. 1. Payoffs from different allocations in Example 1.
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Fig. 2. Maximal loss in Example 1.

Example 1. Consider the question of how to allocate six packages
of information optimally among two bidders whose valuations
consist of six packages each. Assume that the packages take only
two values, 0 and 1

6 + b, and have mean µ =
1
6 . Via b, we vary

the asymmetry of the probability distribution of the packages. An
uninformed bidder’s expected valuation is 6 ·

1
6 = 1. Denote by

πij the seller’s expected gross revenue from giving i packages to
one bidder and j packages to the other bidder. In Fig. 1, we see
π60, π51, π42 and π33 as functions of b. Recalling Propositions 3
and 4, it is not surprising that π33(b) is strictly dominated by the
other curves (except for the symmetric case b =

1
6 where all

the four curves coincide). Beyond these facts, however, the seller’s
optimization problem is rather complex: The set of values of b
for which concentrating all information at one bidder is optimal,
consists of five disjoint intervals. Every asymmetric allocation is
strictly optimal for some values of b. Hence it depends sensitively
on b whether allocations (4, 2), (5, 1), or (6, 0) are revenue-
maximizing.

Fig. 2 depicts max(π60, π51, π42)/π33, the relation between
revenues from allocating six packages optimally and from
allocating them equally. As b increases, the loss quickly reaches a
substantial amount. For large b, allocating information optimally
generates over 30% more revenue than allocating information
equally.

Thus we see that the optimal allocation depends quite sensi-
tively on the probability distribution of the packages.

So far we have only discussed how to allocate a given number
of packages optimally. Let us now look at how many packages in
total the seller should release. The following lemma shows that for
some cost levels the seller will decide to release some, but not all
information.3 The next Lemma shows that the first package that is
given out is the most profitable one:

Lemma 1. The first package of information given out leads to a
strictly higher increase in the seller’s revenue than any additional
package.

The question arises howmuch additional expected revenue can
bemade by giving out a second, a third, or a fourth package. Is there
a result such that the second package leads to a higher revenue
increase than the third, the third package to a higher increase
than the fourth, and so on? The following examples show that this
depends on the probability distribution F :

Example 2. Assume that each bidder’s valuation consists of two
packages, i.e. m = 2.

(1) Assume that the packages are distributed uniformly on
[0, 1]. Then the release of each further package leads to a smaller
increase in the seller’s expected revenue than the package released
before. Hence we find concavity of expected gross revenue in the
number of released packages.

(2) Assume that each package takes the values 0 and 1 with
equal probability. Then the release of the second or the fourth
package does not influence the seller’s expected gross revenue.
Thus, depending on the level of costs, the seller will give out no,
one, or three packages of information. Notably, the seller will only
inform the second bidder perfectly if c = 0.

(3) Assume that the packages are distributed exponentiallywith
parameter 1. Then the first package leads to a higher increase in
revenue than the second which again leads to a higher increase
than the fourth package. The third package, however, leads to a
smaller increase in revenue than the fourth. Thus, depending on
the costs, the seller will release none, one, two, or four information
packages: If the second bidder gets informed at all, he gets fully
informed.

The latter two examples have shown that the sequence of the
seller’s expected gross revenues if he releases a total of l packages
is generally not concave in l.4 Yet the following lemma shows
that the sequence is not too non-concave either, namely, that it is
increasing and bounded from above by a concave function:

Lemma 2. Let the bidders’ valuations consist of m independent,
identically distributed packages, each package with mean µ and
standard deviation σ .5 The seller’s expected gross revenue if he
releases a total of l ≤ 2m packages is weakly increasing in l and
bounded from above by mµ +

σ
2

√
l.

Setting this upper bound in relation to the payoff mµ from
giving out no information also gives us a rough upper bound on
the maximal losses from allocating information suboptimally.

To close this section, we want to discuss two assumptions we
made—first, that packages are identically distributed, and, second,
that there is no preliminary information on the side of the bidders.

To discuss the first assumption, let us consider the situation
where packages are not identically distributed. The proofs of our
results on how to allocate information do not go through in that
setting as we cannot rely on inequality (3). It is also intuitive that

3 This justifies the approach we have taken in this section so far: The lemma
ensures that it is worthwhile to think about how an intermediate, fixed amount
of packages should be split up among the bidders. Considerations of this kind were
pointless if the seller always decided to give out all the packages he has.
4 Such nonconcavities, in a different context, are the main focus of Radner and

Stiglitz (1984), see also Chade and Schlee (2002).
5 As we need a finite standard deviation for this lemma, we have to assume here

(and only here) that the random variables are L2 and not just L1 .
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the results themselves do not carry over in general: Assume that X1
and Y1 had a much larger variance than the remaining packages.
Then the seller should release X1 and Y1 first, even though this
would be an equal split-up of information, in order to create as
much variability in the interim valuations as possible.

The following proposition underlines – for the case of only one
package per bidder – how the seller’s allocation problem depends
on the variability of the packages:

Proposition 5. Consider the casem = 1, i.e., bidders have valuations
X1 and Y1. Assume that X1 and Y1 are independent and have means
µX and µY . Then informing bidder 1 is strictly more profitable in
expectation than informing bidder 2 , if

E[|X1 − µX |] > E[|Y1 − µY |].

In the special casewhereµX = µY = µ, this condition becomes

E[|X1 − µ|] > E[|Y1 − µ|],

i.e., the bidder with the higher mean absolute deviation should be
informed.6 This condition is also equivalent to

E[(X1 − µ)+] > E[(Y1 − µ)+]. (4)

As the uninformed bidder’s valuation is certain and guarantees µ,
the seller compares in (4) a call-option on the valuation of bidder 1
to a call-option on the valuation of bidder 2 (both with strike µ).

Our model of identically distributed, equally costly packages
may look rather limited at first sight. This may be especially true if
one identifies our information packages with concrete properties
of the object for sale. Our packages should be taken as an abstract
division of a large amount of information into small pieces which
are only loosely related to concrete aspects of the object.7 The
package units provide an exact measure of howmuch information
a bidder gets, and help us to compare the amounts of information
different bidders receive not only in an ordinal, but also in a
cardinal ranking. This is an advantage compared to approaches
based on stochastic orderings as in Persico (2000) and Ganuza and
Penalva (2010): Stochastic orderings can express that one bidder
is better informed than another. Yet they do not specify what
it means that, e.g., bidder 1 gets twice as much information as
bidder 2. Our package model is a natural and relatively tractable
way to achieve this goal.

Generally, the analysis of a model with non-identically
distributed packages would be complicated by the same technical
difficulties that made obtaining ‘‘clean’’ solutions difficult in the
identically distributed packages model: Expectations of absolute
values of sums and differences of random variables are much
more difficult to handle than, for example, variances of sums and
differences of random variables. Note, however, that the bounds of
Lemma 2 immediately translate to any non-identically distributed,
independent packages (with the sum of package variances instead
ofmσ 2).

Furthermore, via continuity arguments it should be possible
to extend our analysis to the case of packages which are almost
identically distributed. To illustrate this point, consider the case
of two bidders with valuations X1 + X2 and Y1 + Y2. The Xi and
Yi are independent, X1 and Y1 are exponentially distributed with
parameter 1, and X2 and Y2 are distributed exponentially with

6 Note that a random variable X having a larger absolute deviation than Y is not
equivalent to X having a larger variance than Y . In many natural examples the two
properties however go together.
7 One could, e.g., assume that X1 + · · · + Xl stands for one aspect of the object,

and Xl+1 +· · ·+Xm for another one. Alternatively, one could interpret the packages
as hours the seller spends on informing the different bidders.
parameter λ. Assume that the seller releases two packages in total.
An elementary calculation shows that for 0.97 < λ < 1.04
it is optimal to inform one bidder fully. Hence we see that the
optimality of concentrating information is robust around the value
λ = 1 (at which all packages are identically distributed).

A second assumption of our analysis which may seem rather
strong is that bidders do not hold preliminary private information.
While the effects present in our analysis should still play a role
in such a setting, the seller’s allocation problem would typically
be dominated by other concerns: He should sell information to
bidders which value it highly while still keeping the auction
sufficiently competitive. The bidders’ willingness to pay for
information depends crucially on their private information. This
leads to a quite complex mechanism design problem of which a
solution is beyond the scope of our study. So far, two important
special cases of the problemhave been considered in the literature:
Esö and Szentes (2007) study the problem in the case where
releasing information is costless (such that the seller always gives
out all information). Hoffmann and Inderst (2009) study the one
bidder case with costs of information. In both cases, the question
of how to split up intermediate amounts of information among
different bidders does not arise. Still, even for these ‘‘simple’’ cases
the optimal mechanisms are intricate. Thus, finding the revenue
maximizing mechanism in a model that allows for preliminary
information and for unequal split-ups of information seems highly
challenging.

Nevertheless, our analysis can solve the following non-trivial
problem with preliminary information: An efficiency maximizing
auctioneer decides about giving out costly information before
the auction takes place. He does not charge fees for information
provision. There are two bidderswith valuationsX1+X2 and Y1+Y2
where the Xi and Yi are independent and identically distributed
with an asymmetric distribution. Initially, bidder 1 privately knows
X1 while bidder 2 is uninformed. Assume that the seller wants to
reveal one package in total. Then fromProposition 3we can deduce
the following: Revealing X2, i.e., informing bidder 1 completely,
strictly dominates revealing Y1. Hence we can immediately see
with the techniques we developed so far that the auctioneer
unlevels the playing field further in a situationwhere he could level
it as well.

Another case which is covered by our analysis is the one where
bidders’ valuations have some common value component which
is commonly known and where the seller has in hand only the
information which makes up the difference between the bidders:

4. More than two bidders

So far, we have focused on the two bidder case and found
that a fixed amount of information will generally be allocated
unequally among the bidders. To get a more complete picture we
nowhave a brief look at exampleswithmore than two bidders. The
first example shows that we cannot hope for an equally general
asymmetry result as in the two bidder case. It is a three bidder
version of Example 1.

Example 3. Consider the problem of how to allocate six packages
of information among three bidders. Assume that the probability
distribution of the packages is the same as in Example 1. Let
πijk(b) denote the expected gross revenue from allocating i, j, and k
packages to the three bidders. Fig. 3 compares the allocations πijk.
See that π222(b) is no longer the universal worst choice for all b,
but it is still far from optimal. The optimal information policy again
depends sensitively on b.

In Fig. 3, the curves no longer coincide for the symmetric
case b =

1
6 . To see why, we compare the three bidder case

with the two bidder case: With two bidders, for any symmetric
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1.6
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Fig. 3. Payoffs from different allocations in Example 3.

probability distribution, revenues are independent of the package
allocation, e.g., π20

 1
6


= π11

 1
6


. From this we can conclude

that introducing a third, uninformed bidder must change the
picture: We find that π20(b) = π200(b) and π11(b) < π110(b)
since having two uninformed bidders in the auction is not more
profitable for the seller than having only one uninformed bidder.
This implies π200

 1
6


< π110

 1
6


. Hence with a symmetric

probability distribution F and more than two bidders, a fixed
amount of information should rather be spread equally among two
bidders than concentrated at one bidder. Thus there is no reason to
expect the curves in Fig. 3 to coincide at 1

6 .
We close this discussion with the following observation: In

contrast to the two bidder case and to our previous example, it can
sometimes be strictly optimal to choose a symmetric allocation of
packages when there are more than two bidders:

Example 4. Assume that the seller wants to allocate three pack-
ages of information among at least three bidders. If the packages
are distributed uniformly on [0, 1] or exponentially with param-
eter 1, it is strictly most profitable for the seller to give the three
packages to three different bidders.

5. Conclusion

We have studied an independent private values second-price
auction with entry fees in which the seller can split up a fixed
total amount of information differently among the bidders. We
have found that if giving out information is costly, the seller
often decides not to provide all information. Moreover, we saw
that restricting the seller from allocating amounts of information
symmetrically is a surprisingly strong restriction: In the two
bidder case, choosing a symmetric allocation of information is
essentially the worst decision the seller can take. Any other split-
up of packages (at least into even numbers) would lead to higher
revenues. Suboptimal allocations of information can lower the
seller’s revenues (and overall welfare) substantially.

Several examples in the paper have shown that the optimal
information policy may depend sensitively on the probability
distribution of the information packages. The best way for
allocating information is thus a procedure that demands careful
examination of the setting. To find a good information policy, there
is no simple rule of thumb that can replace a thorough investigation
of how bidders may incorporate additional information.

We want to point out that the difficulties we find in our
simple model indicate that a more general analysis must be
highly complex. For instance, we have seen that the optimal split-
up of information depends very sensitively on how the bidders’
valuations are distributed. We have seen as well that returns
to giving out information are not monotonically decreasing. It
remains a challenge to find amore tractable model that still allows
for an easy and quite natural cardinal ranking of informativeness.
All classes of models with release of information that contain
our model of independent information packages will suffer from
non-monotonicity and sensitivity with regard to distributional
assumptions.

Appendix. Proofs

Proof of Proposition 1. Define 1{i} = 1{i wins}. To prove the for-
mula for the entry fees, we only have to show that

E[(X (1)
−X (2))1{i}]

is the expected revenue of bidder i from the informed auction. De-
fine F = σ(


i Fi), i.e., F is the smallest σ -algebra containing all

Fi. Then we have, using independence of the Fi, F -measurability
of 1{i} and the law of iterated expectations:

E[X (1)1{i}] = E[E[Xi|Fi]1{i}] = E[E[Xi|F ]1{i}]

= E[E[Xi1{i}|F ]] = E[Xi1{i}].

We thus have

E[(X (1)
−X (2))1{i}] = E[(Xi −X (2))1{i}] = ei

which is the expected revenue of bidder i that the seller can extract
as an entry fee. We further have to show that the seller’s expected
revenue is equal to

E[X (1)
].

As
∑

i 1{i} = 1, the agents’ entry fees add up to

E[X (1)
−X (2)

].

Adding to this the expected selling price in the second-price auc-
tion, which is E[X (2)

], we are done. �

Proof of Proposition 2. The formula for the entry fees is proved
by showing that the difference between the fees equals |E[X1] −

E[X2]| and their sum equals E[|X1−X2|]. The two agents’ entry fees
as calculated in the previous proposition are

e1 = E[(X1 −X2)1{1 wins}] and e2 = E[(X2 −X1)1{2 wins}].

The difference in entry fees, e1 − e2, equals

E[(X1 −X2)1{1 wins}] − E[(X2 −X1)1{2 wins}]

= E[(X1 −X2)1{1 wins}] + E[(X1 −X2)1{2 wins}]

= E[X1] − E[X2].

Their sum, e1 + e2, equals

E[(X1 −X2)1{1 wins}] + E[(X2 −X1)1{2 wins}]

= E[(|X1 −X2|)1{1 wins}] + E[(|X1 −X2|)1{2 wins}]

= E[|X1 −X2|]. �

Proof of Proposition 3. In this and the following proofs, we make
use of the fact that for k, j ≤ m the seller’s expected revenue from
revealing X1, . . . , Xk and Y1, . . . , Yj can be rewritten as

E[max(X1 + · · · + Xk + (m − k)µ, Y1 + · · · + Yj + (m − j)µ)]

= mµ + E[max((X1 − µ) + · · · + (Xk − µ), (Y1 − µ)

+ · · · + (Yj − µ))]

= mµ +
1
2
E[|(X1 − µ) + · · · + (Xk − µ) − (Y1 − µ)

− · · · − (Yj − µ)|]. (5)

In order to compare the seller’s expected revenue from different
choices of k and j, we can concentrate on the second summand
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in the last expression. As this expression only depends on the
random variables Xi − µ and Yi − µ, we can set µ = 0 without
loss of generality. To prove that giving all packages to one bidder
weakly dominates the equal split-up, we just have to show that for
independent, identically distributed, mean zero random variables
Xi and Yi

E[|X1 + · · · + Xk + Xk+1 + · · · + X2k|]

≥ E[|X1 + · · · + Xk − Y1 − · · · − Yk|] (6)

with equality exactly in the symmetric distribution case. Recall the
inequality from Jagers et al. (1995) cited above: For X and Y i.i.d.

E[|X + Y |] ≥ E[|X − Y |]

(with equality exactly in the symmetric case). Setting X = X1 +

· · · + Xk and Y = Y1 + · · · + Yk, this becomes

E[|X1 + · · · + Xk + Y1 + · · · + Yk|]

≥ E[|X1 + · · · + Xk − Y1 − · · · − Yk|].

By the i.i.d. assumption we can substitute Y1, . . . , Yk on the left
hand side by Xk+1, . . . , X2k and obtain (6). (Note that a sum of i.i.d.
random variables is symmetric around its mean if and only if the
summands are symmetric around their means.) �

Proof of Proposition 4. In order to circumvent an unnecessarily
complicated notation for a simple variation of the proof of
Proposition 3, we only show that six packages should rather be
split up into four and two than into three and three. All the
other inequalities covered by Proposition 4 follow from analogous
arguments. By (5), we only have to show that for i.i.d. mean-zero
random variables Xi and Yi

E[|X1 + X2 + X3 + X4 − Y1 − Y2|]

≥ E[|X1 + X2 + X3 − Y1 − Y2 − Y2|]. (7)

We start again with

E[|X + Y |] ≥ E[|X − Y |].

Setting X = X1 + X2 − X3 and Y = X4 + X5 − X6, this becomes

E[|X1 + X2 + X4 + X5 − X3 − X6|]

≥ E[|X1 + X2 + X6 − X3 − X4 − X5|].

Using the i.i.d. assumption we can rename the summands on both
sides of the inequality and obtain (7). To see that the distribution
of X1 + X2 − X3 is asymmetric if and only if the distribution
of the Xi is asymmetric, note that X1 + X2 − X3 is the sum of
the (possibly asymmetric) random variable X1 and the always
symmetric random variable X2−X3. The other inequalities covered
by the proposition follow with parallel arguments, setting X =

X1 + X2 + X3 − X4, then X = X1 + X2 + X3 − X4 − X5, etc. �

Proof of Lemma 1. Consider 0 ≤ k, j ≤ m with k + j ≥ 2 and
k ≥ 1. As adding another package always costs c , we only have
to consider by how much a package raises the seller’s expected
gross revenue. It is sufficient to compare the increase in revenue
from revealing the kth package to bidder 1 given that bidder 2
gets j packages with the revenue increase from revealing the
first package to bidder 1 given that bidder 2 gets no package. So
by (5), we have to show that for i.i.d. mean-zero random variables
X1, . . . , Xk and Y1, . . . , Yj

E[|X1 + · · · + Xk − Y1 − · · · − Yj|

−|X1 + · · · + Xk−1 − Y1 − · · · − Yj|] < E[|X1|].

The fact that this inequality holds weakly is an immediate
consequence of the triangle inequalitywhereweuse that E[|X1|] =

E[|Xk|]. Since we have assumed the Xi and Yi to be not a.s. constant,
equality would contradict the independence of the Xi and Yi. Thus
we obtain a strict inequality and are done. �

Proof of Example 2. We only need to consider gross revenues
since every additional package costs c . By (5), we know that, for
the first two (symmetric) examples, it is sufficient to compare the
increments of the sequence 0, E[|X1|], E[|X1 + X2|], E[|X1 + X2 +

X3|], E[|X1 + X2 + X3 + X4|] for independent random variables Xi
distributed according to the distributions from the examples but
shifted to havemean zero. For the uniformdistribution on


−

1
2 ,

1
2


,

we obtain

E[|X1|] =
1
4
, E[|X1 + X2|] =

1
3
,

E[|X1 + X2 + X3|] =
13
32

, and

E[|X1 + X2 + X3 + X4|] =
7
15

.

For the distribution that takes−
1
2 and 1

2 with equal probability we
get

E[|X1|] =
1
2
, E[|X1 + X2|] =

1
2
,

E[|X1 + X2 + X3|] =
3
4
, and

E[|X1 + X2 + X3 + X4|] =
3
4
.

For the third example where – because of the asymmetry – the
order inwhich packages are allocatedmatters, we have to compare
the increments of the sequence 0, E[|X1|], E[|X1+X2|], E[|X1+X2−

X3|], E[|X1 +X2 −X3 −X4|] to see how the different packages affect
the seller’s revenue. Here, the Xi are independent and distributed
according to the exponential distribution shifted by its mean 1 to
the left. We obtain

E[|X1|] = 2e−1, E[|X1 + X2|] = 8e−2,

E[|X1 + X2 − X3|] =
7
2
e−1, and

E[|X1 + X2 − X3 − X4|] =
3
2
.

Calculating these expectations is tedious but straightforward.
Besides the formulas for the distribution functions of sums of
uniformly and exponentially distributed random variables from
Feller (1971), the following result from Jagers et al. (1995) proved
to be useful in the third example: Let X and Y be independent
randomvariableswith distribution functions F andG. Then it holds
that

E[|X − Y |] =

∫
∞

−∞

F(x)(1 − G(x))dx +

∫
∞

−∞

G(x)(1 − F(x))dx. �

Proof of Lemma 2. Denote by Xi and Yi the packages of informa-
tion of the two agents normalized such that they have mean zero.
By (5), we have to prove that the sequence of the seller’s gross rev-
enues

Pl := mµ + max
0≤k≤l

1
2
E[|(X1 − µ) + · · · + (Xk − µ) − (Y1 − µ)

− · · · − (Yl−k − µ)|]

is bounded bymµ+
σ
2

√
l and weakly increasing in l. Note that it is

sufficient to prove this forµ = 0. The upper boundon the sequence
(Pl)l follows with Jensen’s inequality:

E[|X1 + · · · + Xk − Y1 − · · · − Yl−k|]

= E[


(X1 + · · · + Xk − Y1 − · · · − Yl−k)2]
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≤

Var(X1 + · · · + Xk − Y1 − · · · − Yl−k)

=


lVar(X1) =

√
lσ .

To see that the sequence (Pl)l isweakly increasingwe show that the
optimal split-up of l+ 1 packages is at least as good as the optimal
split-up of l packages. Choose a kwith 0 ≤ k ≤ lwhich maximizes

E[|X1 + · · · + Xk − Y1 − · · · − Yl−k|],

and set A = X1 + · · ·+ Xk − Y1 − · · ·− Yl−k. Note that the function
g : R → R given by

g(z) ≡ E[|A + z|]

is convex. Thus, by Jensen’s inequality,

g(0) = g(E[Xk+1]) ≤ E[g(Xk+1)].

Yet this is the same as

E[|X1 + · · · + Xk − Y1 − · · · − Yl−k|]

≤ E[|X1 + · · · + Xk+1 − Y1 − · · · − Yl−k|].

Hence we have found a split-up of l + 1 packages that leads
to a weakly higher gross revenue than the optimal split-up of l
packages. Thus also the optimal split-up of l + 1 packages leads
to a weakly higher gross revenue than the optimal split-up of l
packages. �

Proof of Proposition 5. It is strictly more profitable to inform
bidder 1 than to inform bidder 2, if

E[max(X1, µY )] > E[max(µX , Y1)].

By the identity max(u, v) =
1
2 (u + v + |u − v|) this is equivalent

to

E[|X1 − µY |] > E[|Y1 − µX |]. �

Proof of Example 4. Denote the packages of the first three bidders
by Xi, Yi and Zi, respectively. We have to show that for both
distributions all the three packages should be given to three
different bidders no matter whether the number of bidders is
exactly 3 or greater. Thus we have to show that

E[max(X1 + X2 + X3, 3µ)]

< E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ)]

E[max(X1 + X2 + µ, Y1 + 2µ, 3µ)]

< E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ)]

for exactly three bidders and

E[max(X1 + X2 + X3, 3µ)]

< E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ, 3µ)]

E[max(X1 + X2 + µ, Y1 + 2µ, 3µ)]

< E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ, 3µ)]

for more than three bidders. Obviously, the first two of these
inequalities imply the second two. The first two inequalities follow
from the following calculations: For the exponential distribution
(where µ = 1), we have

E[max(X1 + X2 + X3, 3µ)] = 3 +
27
2

e−3,

E[max(X1 + X2 + µ, Y1 + 2µ, 3µ)] = 3 + e−1
+ 4e−2

−
7
4
e−3,

E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ)] =
23
6

.

For the uniform distribution (where µ =
1
2 ), we have

E[max(X1 + X2 + X3, 3µ)] =
109
64

,

E[max(X1 + X2 + µ, Y1 + 2µ, 3µ)] =
671
384

,

E[max(X1 + 2µ, Y1 + 2µ, Z1 + 2µ)] =
7
4
. �
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