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Abstract

In mechanism design, Myerson’s classical regularity assumption is often

too weak to imply quantitative results about the performance of sales mecha-

nisms. For example, ratios between revenue and welfare, or sales probabilities

may vanish at the boundary of Myerson regularity. Therefore, for quantita-

tive results, many authors have resorted to much stronger assumptions such

as the monotone hazard rate condition. This motivates us to explore perfor-

mance bounds for sales mechanisms that follow from a quantitative version of

Myerson regularity, which we call λ-regularity. The parameter λ interpolates

from Myerson regularity to the monotone hazard rate condition and beyond.

We provide four equivalent definitions of the concept. These rely on a growth

condition on the virtual valuations function (known as α-strong regularity),

a monotonicity condition on a generalized hazard rate, a ρ-concavity condi-

tion on survival functions and a comparison relation in the convex transform

order. By highlighting the interplay between these different perspectives, we

unify previous work in economics, computer science, applied mathematics

and statistics. We demonstrate the usefulness of λ-regularity for quantitative

mechanism design by proving various performance bounds for sales mech-

anisms. In addition, we briefly consider applications beyond auctions and

mechanism design such as the measurement of inequality in populations.
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1 Introduction

Since Myerson (1981)’s seminal study of optimal auctions, his regularity condition

of increasing virtual valuations has been a cornerstone of the theory of auctions and

mechanism design. Yet, Myerson regularity alone is often too weak to guarantee

that a model is sufficiently well-behaved for quantitative analysis, such as compar-

isons of welfare versus revenues, or controlling probabilities of sale in an auction.

This liberality of Myerson regularity has become particularly apparent in the recent

literature on algorithmic mechanism design, where it typically needs enforcement

by additional assumptions.1 This literature aims at turning mechanism design more

scalable and more quantitative, and therefore better suited for many real world

problems. By replacing the classical objective of optimality with the more modest

goal of guaranteeing a good approximation of the optimal outcome, various chal-

lenging problems (asymmetry, uncertainty about distributions, complex preferences

over multiple objects...) can now be handled to a degree that was previously out of

reach. For example, several papers analyze successful auction design if only a sam-

ple from the bid distribution is known, thereby dropping the classical assumption

of common knowledge of distributions.2 Thus, these works address Wilson (1987)’s

critique that asked for a more detail-free approach towards mechanism design.

In many applications, it is desired to estimate quantities such as the ratio of

revenue to welfare for a large class of admissible distributions – ideally, for all reg-

ular distributions.3 Yet, as the distributions at the boundary of Myerson regularity

behave badly, such uniform estimates for all regular distributions cannot exist. In

such cases, quantitative estimates have often been obtained by restricting the set of

admissible distributions to those that fulfill the monotone hazard rate (MHR) condi-

tion, also known as increasing failure rate (IFR).4 Quantitatively, MHR distributions

are easier to handle as they have convenient properties such as log-concavity of the

1See Hartline (2014) and Roughgarden (2015).
2See, e.g., Dhangwatnotai et al. (2014) or Azar et al. (2014).
3For instance, bounds on the ratio of revenue to welfare imply a uniform control of what is lost

when a seller maximizes welfare rather than revenue. This is relevant as revenue maximization
tends to be the harder problem involving, e.g., the choice of a non-trivial reserve price which
depends on knowledge of the distribution of valuations.

4We provide various references in Section 3.1. The monotone hazard rate condition is, of course,
not a recent invention but has been a convenient assumption in the microeconomics literature for
decades, see e.g. Fudenberg and Tirole (1991).
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survival function “1−F”. Further, they easily compare to exponential distributions.

This facilitates analysis a lot.

Moving from the Myerson regular to the monotone hazard rate case, the class

of admissible distributions becomes considerably smaller. For example, the class

of Myerson regular distributions contains heavy-tailed (power law) distributions.

These are ruled out under the monotone hazard rate condition, under which the

exponential distribution marks the boundary of the admissible heaviness of tails.

Likewise, the monotone hazard rate condition rules out some local irregularities

of distributions that are still admissible under Myerson regularity. Both aspects

may matter in many applications. Thus, it would be good to impose less than the

monotone hazard rate condition, while still being able to provide quantitative results

for which Myerson regularity alone is not strong enough.

In this paper, we study an alternative strengthening of Myerson regularity. We

define a distribution as λ-regular if the slope of the virtual valuations function is

bounded from below by ε = 1 − λ for some λ ≤ 1. 1-regularity is thus exactly

Myerson regularity. λ = 0, i.e. ε = 1, corresponds to the monotone hazard rate

condition. Choosing ε ∈ (0, 1) interpolates between the two cases. This condition

has appeared before in the literature on auctions and related topics. It coincides with

the ρ-concavity assumption on the survival functions as in, e.g., Ewerhart (2013)

and Mares and Swinkels (2011, 2014) and with the concept of α-strong regularity in

Cole and Roughgarden (2014), with ρ = −λ and α = 1− λ.

These authors have different perspectives on the condition which we unify in the

present paper. The main contribution of this paper is twofold. First, many of the key

tools in the algorithmic mechanism design literature carry over with small changes

from the monotone hazard rate to the general λ-regular case.5 Second, λ-regularity

has deep roots in several literatures which implies that it can be exploited in various

ways. λ-regularity has an alternative representation in terms of monotonicity of a

generalized hazard rate, a generalized concavity condition on the survival function,

and it allows for comparisons (in the convex-transform order) with an explicit class

of reference distributions. These properties link λ-regularity with two rich and

5A similar project was carried out independently in parallel work by Cole and Rao (2017), see
below for more discussion.
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distinct bodies of work in applied mathematics, the literature on generalized notions

of concavity and the literature on reliability and stochastic orders.6 The latter,

statistical implications have been applied in auction theory mainly for the monotone

hazard rate case. Thus, while the concept itself is not new, we provide a more

complete picture of its scope, its history and its implications in mechanism design

than previous works. One of our main contributions is to emphasize that λ-regularity

does not just coincide with one but with multiple existing concepts.

Combining these perspectives and the tools they imply, we first extend a series of

quantitative estimates about the single bidder case from the monotone hazard rate

case to the λ-regular case. These results have been used heavily in the algorithmic

mechanism design literature. There, quantitative estimates for λ = 0 are often

contrasted against their breakdown for λ = 1.7 Our estimates continue to hold for

any λ < 1 with constants that (must) blow up in the limit λ → 1. In particular,

we confirm that it is, in a sense, merely the boundary of Myerson regularity that

typically causes problems. We then turn to a number of results about order statistics

and the n-bidder case. We provide a lower bound on the revenue-to-welfare ratio in

single-object auctions, and some additional bounds on small order statistics. As an

application beyond mechanism design, we also provide sharp estimates for a family

of generalized Gini indices for the measurement of inequality.

Related Literature

To our knowledge, so far, the connection between λ-regularity and results in reliabil-

ity theory has been explored in economics only for the monotone hazard condition

and the comparison with the exponential distribution it entails. In some applica-

tions, the monotone hazard rate condition is a boundary case at which the compar-

ative statics of the model change fundamentally.8 In other applications, monotone

hazard rates are assumed in order to obtain some quantitative control of the under-

lying distributions. In the latter cases, λ-regularity is an attractive replacement.

6For pointers to the former literature, see, e.g., Balogh and Ewerhart (2014), for an introduction
to the latter Marshall and Olkin (2007) or Shaked and Shanthikumar (2007).

7For a typical example, see Aggarwal et al. (2009).
8For instance, whether the expected difference between the two highest valuations is increasing

or decreasing in the number of bidders switches at the exponential boundary case. This observation
is central, e.g., to Moldovanu et al. (2007, 2008) and to Szech (2011).
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There is a small literature investigating the connection between generalized con-

cavity and conditions related to increasing virtual valuations. Applications of gener-

alized concavity in economics begin with Caplin and Nalebuff (1991a,b). Our work

is related to applications in equilibrium and price theory such as Anderson and Re-

nault (2003) or Weyl and Fabinger (2013) and, especially, the applications in auction

theory by Ewerhart (2013) and Mares and Swinkels (2011, 2014). Of these works,

Anderson and Renault (2003) are specifically close in spirit to our paper, though

they study a different context. They derive elementary, quantitative bounds on key

quantities of a Cournot competition model in terms of generalized concavity of the

demand (or survival) function. Ewerhart (2013) is complementary to our paper,

providing explicit conditions for λ-regularity in terms of the density function, and a

discussion of parametric distribution classes that satisfy the condition.9 Moreover,

generalized concavity has been applied in the study of procurement auctions with

asymmetric valuation distributions by Mares and Swinkels (2011, 2014). In the pro-

curement setting, small realizations of a cost parameter replace large realizations of

valuations. Therefore, issues of heavy tails and infinite expected values do not arise

like in classical auctions. Mares and Swinkels (2011, 2014) focus on handling two

challenging particular applications. Our focus is on providing λ-regular versions of

key tools that have been used in numerous papers.

Finally, Cole and Roughgarden (2014) propose the condition under the name α-

strong regularity with similar intentions as ours, providing a new tool for algorithmic

mechanism design. They identify the family of boundary cases in Definition 1 below

and show a bound on selling probabilities, see Proposition 4 below. Independently

from us and parallelly, Cole and Rao (2017) have extended the approach of Cole and

Roughgarden (2014) in a similar direction as us. While there is some overlap in the

results, Cole and Rao (2017) and our paper are nevertheless highly complementary.

While Cole and Rao develop the implications in algorithmic game theory in far more

detail than we do, our work connects the concept to deep results in several earlier

literatures in economics and applied mathematics. For instance, the results on λ∗-

9Ewerhart’s interest in λ-regular distributions is not so much motivated by quantitative con-
siderations but rather by the fact that in some generalized auction models the classical regularity
condition is replaced by λ-regularity. See his paper for references. Our results also apply in these
settings.
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regularity in Section 4 provide a further generalization of the crucial Proposition

4, relying on a very classical line of reasoning. In addition, the techniques of proof

in the two papers are very different. While we interpret λ-regularity as a property

which is (among others) analogous to the usual monotone hazard rate condition

from a more abstract perspective, Cole and Rao use λ-regularity mostly as a more

general growth condition on the classical hazard rate.

So far, there has been no consensus in the literature concerning the optimal

parametrization of this family of conditions. Our parametrization departs both

from the literature on ρ-concavity (ρ = −λ) and from that on α-strong regularity

(α = 1− λ). Our parametrization is motivated by two arguments: The three most

important special cases are λ = −1, λ = 0 and λ = 1, corresponding to comparisons

with the uniform, exponential and equal-revenue distribution. Myerson regularity,

the classical benchmark, is λ = 1 and the most relevant range of values between the

monotone hazard rate condition and Myerson regularity is the unit interval [0, 1].

The statistical implications of λ-regularity have hardly been explored beyond the

case λ = 0. For one thing, this concerns the direct use of tools from reliability theory.

For another, the formulation of λ-regularity in terms of a generalized monotone

hazard rate condition proves to be powerful in several of our arguments since it

enables us to directly adapt arguments from the monotone hazard rate case. As

all these perspectives are equivalent, it is possible to replace one technique of proof

by another in some cases. Yet often, a result follows much more easily from one

perspective than from another.10

Outline

Section 2 introduces λ-regularity, discusses equivalent formulations and provides

some structural properties such as existence of moments and invariance under mono-

tone, concave transformations. Section 3 presents our performance bounds and dis-

cusses their implications in the algorithmic mechanism design literature. Section

4 shows that some of the key results of Section 3 remain valid when λ-regularity

10For two concrete examples, Ewerhart (2013)’s sufficient condition for λ-regularity relies on
deep results from the generalized concavity literature. In the monotone hazard rate case, similar
implications of log-concavity have been studied by Bagnoli and Bergstrom (2005). In contrast,
our result on existence of moments under λ-regularity is very much in the tradition of reliability
theory.
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is replaced by an even weaker notion that we call λ∗-regularity. λ∗-regularity is a

generalization of the IFRA (increasing failure rate average) property in the same

way that λ-regularity generalizes the monotone hazard rate condition. Section 5.1

points out converses of our results if the slope of virtual valuations is bounded from

above rather than from below. Prominent special cases of this condition are the

assumptions of a decreasing density or decreasing failure rate. Section 5.2 discusses

λ-regularity in relation to hyperregularity, an alternative strengthening of Myerson

regularity proposed by Kleinberg and Yuan (2013). Hyperregularity corresponds to

the increasing generalized failure rate (IGFR) condition of Lariviere and Porteus

(2001) which has been studied quite a bit in the revenue management literature.

We provide pointers to this literature as well. Finally, Section 6 provides an inter-

pretation of λ-regularity when the framework is transformed from a price-setting to

a quantity-setting problem. For the classical regularity condition, interpretations of

this transformation go back to Bulow and Roberts (1989). Section 7 concludes. All

proofs are in the appendix.

2 λ-Regularity

Throughout, we assume that probability distribution functions F have a continu-

ously differentiable density f that is positive in the interior of the support (α, ω)

of F where 0 ≤ α < ω ≤ ∞.11 We treat F as probability distribution on R+ with

f(x) = 0 outside the support, and denote by X a random variable distributed ac-

cording to F . Unless otherwise noted, we use the term increasing in the meaning of

weakly increasing, and analogously for decreasing, convex and concave.

We say that F is λ-regular for some (possibly negative) λ ≤ 1 if the generalized

virtual valuations function

vλ(x) = λx− 1− F (x)

f(x)

is increasing over (α, ω). This is equivalent to assuming that the slope of the classical

11Assuming positivity is essentially without loss of generality as gaps in the support would lead
to a violation of Myerson regularity. We use the smoothness assumption mainly in the proof of
Proposition 1 where it could be relaxed with the same techniques as in Lemma 1 of Ewerhart
(2013).
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virtual valuations function v1 is bounded from below by 1 − λ, v′1(x) ≥ 1 − λ. 1-

regularity is thus Myerson’s regularity assumption, while 0-regularity corresponds to

the classical monotone hazard rate (MHR) condition, also known as the increasing

failure rate condition (IFR). For λ1 < λ2, λ1-regularity implies λ2-regularity. In

particular, λ-regularity for some λ < 1 implies Myerson regularity.

In the following, we argue that λ-regularity with λ 6= 0 has many properties in

common with the increasing hazard rate condition λ = 0. As a first step, we define

the generalized hazard rate (or generalized failure rate)

rλ(x) =
f(x)

(1− F (x))1+λ
.

As we will see below, monotonicity of rλ is equivalent to monotonicity of vλ. The

following lemma states that any distribution F may be expressed in terms of the

rate rλ.

Lemma 1. For λ ≤ 1, λ 6= 0, and x ≥ 0, we can write

1− F (x) = Γλ (Hλ(x))

where the decreasing function Γλ : R+ → [0, 1] is given by

Γλ(x) =

0 when λ < 0 and x > − 1
λ

(1 + λx)−
1
λ otherwise

and where

Hλ(x) =

∫ x

0

rλ(y)dy.

For the classical hazard rate with λ = 0, this is a familiar result where the

function Γλ is replaced by its limit Γ0(x) = exp(−x) and the lemma is reduced to

the famous characterization of the survival function via the hazard rate,

1− F (x) = exp

(
−
∫ x

0

r0(y)dy

)
. (1)

Similarly, for λ = −1 the result boils down to the classical representation of the

distribution function F as an integral of the density f ≡ r−1. Based on the lemma, it

is straightforward to define families of distributions for which the rate rλ is constant.
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For later use, we define two such families, Gρ,λ and Fµ,λ. These are the same

distributions, once parametrized by their constant generalized hazard rate and once

parametrized by their mean (if it exists).12

Definition 1.

(i) For ρ > 0 and λ 6= 0, define the probability distribution Gρ,λ by

Gρ,λ(x) = 1− Γλ(ρ · x) = 1− (1 + λρx)−
1
λ

with support (0,∞) for λ > 0 and support
(

0,− 1
ρ λ

)
for λ < 0. The generalized

hazard rate of Gρ,λ satisfies rλ(x) = ρ for all x in the support. Moreover, for λ < 1,

Gρ,λ has mean µ = 1
ρ(1−λ) .

(ii) For µ > 0, λ < 1, λ 6= 0, define the probability distribution Fµ,λ by

Fµ,λ(x) = 1− Γλ

(
x

µ(1− λ)

)

with support (0,∞) for λ ∈ (0, 1) and support
(

0,−µ(1−λ)
λ

)
for λ < 0. Fµ,λ has

constant rate rλ(x) = 1
µ(1−λ) and mean µ.

For λ < 0, the distributions Gρ,λ and Fµ,λ are thus a subclass of (rescaled)

Beta distributions, while the distributions for λ > 0 are Pareto distributions. The

distribution G1,1 is a horizontal shift of the equal-revenue distribution. The latter

is a well-known distribution at the boundary of Myerson regularity.13 For λ → 0,

Fµ,λ converges to an exponential distribution with rate µ. Finally, λ = −1 yields a

uniform distribution.

The next proposition draws the connection between monotonicity of generalized

virtual valuations, monotonicity of generalized hazard rates, generalized concavity

of 1 − F , and a comparison with the boundary cases Gρ,λ in the convex-transform

order.

Proposition 1. The following claims are equivalent for any λ 6= 0.

12In the definition, the expressions for the mean follow from applying Lemma 3 in the Appendix
with a = 0 and b = ρ.

13See, e.g., the monograph Hartline (2014). The equal-revenue distribution has the distribution
function G1,1(x− 1) = 1− x−1 with support (1,∞).

9



(i) The distribution F is λ-regular, i.e., vλ is increasing.

(ii) The generalized hazard rate rλ associated with F is increasing.

(iii) The survival function 1− F is ρ-concave with ρ = −λ, i.e.,

−(1− F (x))−λ

λ

is concave in x.

(iv) F is dominated by G1,λ in the convex-transform order, i.e., Hλ(x) = G−11,λ(F (x))

is convex in x.

Part (iii) of the proposition corresponds to log-concavity of 1−F in the monotone

hazard rate case λ = 0, and to concavity of 1 − F for λ = −1. In (iii), we follow

the terminology of ρ-concavity as applied, e.g., in Ewerhart (2013). A function g is

ρ-concave if g(x)ρ/ρ is concave.

Many of the ingredients of the proposition have appeared before, in different

lines of research. For the regular case λ = 1, the equivalence of (i) and (iii) was

first observed in McAfee and McMillan (1987). The equivalence of Myerson’s regu-

larity to monotonicity of the rate r1 is discussed in Ewerhart (2013) and applied in

Szech (2011). In the revenue management literature, parts (i-iii) of the proposition

(with λ = 1) had independently been suggested as conditions on demand curves.14

Equivalence of (iii) and (iv) was observed already in van Zwet (1964, Section 4.3.2).

Equivalence of (ii) and (iv) has been applied in the auctions literature mainly for

λ = 0 where it corresponds to a comparison with the exponential distribution under

the monotone hazard rate condition.15 Ewerhart (2013) and Mares and Swinkels

(2011, 2014) discuss the family of conditions for varying λ, focusing mainly on the

equivalence of (i) and (iii).16 Cole and Roughgarden (2014) and Cole and Rao (2017)

mostly apply (i) directly or interpret it as a growth condition on the classical hazard

14See Section 5.2 below and Ziya et al. (2004) for details.
15Many applications of the monotone hazard rate condition in auction theory can be interpreted

in this way, see the next section for examples. Similarly, the assumption that the density is
monotonic, λ = −1, can often be interpreted as a comparison with the uniform distribution.

16Mares and Swinkels (2011, 2014) consider procurement auctions where virtual valuations are
replaced by virtual costs x + F (x)/f(x) and the focus is on small values of x. Since the support
of F is bounded from below but not from above, issues of heavy tails and infinite expected values
are negligible in the procurement setting.
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rate r1.

Our formulation emphasizes two aspects that will be fruitful to exploit:

(i) Combining the proposition with Lemma 1 enables us to apply monotonicity

of the generalized rate rλ almost in the same way as the classical monotone

hazard rate assumption. This idea is a key ingredient in many of the proofs

of the following section.

(ii) Part (iv) of the proposition connects λ-regularity to a sizable literature in

reliability theory that considers classes of distributions that are dominated by

a reference distribution in terms of the convex-transform order.17 The next

proposition collects two more structural results that rely on arguments adapted

from this literature.

Proposition 2.

(i) Let F be λ-regular for some λ ∈ (0, 1). Then E[Xp] is finite for all p ∈ [1, 1
λ
).

(ii) Let F be λ-regular for some λ ≤ 1 and let the mapping h : R+ → R+ be concave

and strictly increasing. Then the distribution of h(X) is λ-regular as well.

The first part of the proposition guarantees that λ-regular distributions with

λ < 1 always possess a finite mean. Similarly, all distributions that are λ-regular for

some λ < 1
2

possess a finite variance.18 As can be seen from the proof, it actually

suffices for λ-regularity to hold in the tails of a distribution, i.e., from some threshold

on. The second part shows that λ-regularity is inherited by linear shifts and stretches

of F .

Conversely to λ-regularity, we define λ-antiregularity as follows. A distribu-

tion F is λ-antiregular for some λ ≤ 1 if the function vλ(x) is decreasing in x.

While λ-regularity postulates that the tails of the distribution are not too heavy,

λ-antiregularity postulates that the tails are sufficiently heavy. The most common

17Two seminal early references are van Zwet (1964) and Barlow and Proschan (1966). See
Chapter 4.B of Shaked and Shanthikumar (2007) for an overview and a collection of implications.

18In Proposition 2 (i), we exclude the cases λ ≤ 0. 0-regularity, i.e., the monotone hazard rate
condition, implies finiteness of all moments, see Barlow and Proschan (1965). λ-regularity with
negative λ implies 0-regularity and thus existence of all moments.
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assumptions of this type are 0-antiregularity which is the classical decreasing failure

rate condition (DFR), and (−1)-antiregularity which is equivalent to the density f

being decreasing. Many of our results have counterparts in the antiregular case.

These are discussed in Section 5.1 below.

3 Performance Bounds

This section shows how to generalize performance bounds for sales mechanisms from

the monotone hazard rate case to the general λ-regular case with λ < 1. We thus

demonstrate that these performance bounds continue to hold (with different con-

stants) right up to the boundary of Myerson regularity. In typical applications from

algorithmic mechanism design, the monotone hazard rate condition enters through

elementary observations about the single-bidder case. These observations are used

to analyze more complex mechanisms in a modular fashion. For example, Propo-

sition 4 below provides a lower bound on the probability that a single bidder has

a valuation above Myerson’s optimal reserve price. This result implies bounds on

the probability that the item is (not) sold even with many bidders. For this rea-

son, most of the results below focus on the single bidder case – even though the

intended applications are complex problems with multiple items and many bidders.

In particular, how to proceed from the single-bidder case to more complex settings

is known in many cases. Generalizing the “input” results for the single-bidder case

to λ-regularity is often sufficient for generalizing the final results. Section 3.1 gath-

ers the key inputs of this type for various papers in the algorithmic mechanism

design literature. Some implications of λ-regularity that explicitly address the case

of multiple agents are presented in Section 3.2.

3.1 Basic Bounds

When selling to a single buyer whose valuation X is distributed according to F ,

the optimal posted price can be found via the virtual valuation function. This is

shown in Myerson (1981). The revenue-optimal posted price p∗ is exactly the value

at which the virtual valuation function v1 turns zero. The same value p∗ is also the

revenue-optimal reserve price in an auction with many bidders with independent

12



private valuations.

On an unbounded state space, Myerson regularity does not guarantee the exis-

tence of the reserve p∗. λ-regularity, however, implies existence and uniqueness of

p∗.

Proposition 3. Let F be λ-regular for some λ < 1. Then there exists a unique

reserve p∗ ∈ (α, ω) with v1(p
∗) = 0.

Proposition 4 provides lower bounds on the probabilities that the buyer valuation

X lies above the mean of F , and above the reserve p∗, respectively. The proposition

thus gives an explicit lower bound on the probability that a single buyer with a

valuation drawn from an arbitrary λ-regular distribution rejects the revenue-optimal

take-it-or-leave-it offer p∗. Both bounds are sharp for boundary cases in which vλ is

constant.

Proposition 4. Let F be λ-regular for some λ < 1, λ 6= 0. Denote by µ the mean of

F and by p∗ the unique zero of v1, i.e., the reserve. Then the following inequalities

hold:

P (X > µ) ≥ Γλ

(
1

1− λ

)
= (1− λ)

1
λ

and

P (X > p∗) = P (v1(X) > 0) ≥ (1− λ)
1
λ .

In the monotone hazard rate case, λ = 0, the constant on the right hand side of

both inequalities of Proposition 4 converges to exp(−1) ≈ 0.368. In this form, both

inequalities have been applied frequently in the literature. In some cases, this is the

only place where the monotone hazard rate assumption enters so that the results of

the papers generalize instantly to the λ-regular case.19 The dependence of the lower

bound on λ is shown in Figure 1. We see that λ = 0 is far from an exceptional value

in this perspective. At λ = 1/2, the threshold where variances may become infinite,

the bound is still at 0.25 and thus far from zero.

With Proposition 4, we revisit a well-known result. The first bound can be

deduced directly from classical results in reliability theory using our Proposition 1

19The first inequality is e.g. used in Hartline et al. (2008) and Azar et al. (2013), the second one
in Hartline et al. (2008), Aggarwal et al. (2009), Daskalakis and Pierrakos (2011) and Cigler et al.
(2014). In Daskalakis and Pierrakos (2011) and in Cigler et al. (2014), this is the only application
of the monotone hazard rate assumption.

13



(iv).20 The second bound is shown in Cole and Roughgarden (2014), Lemma 4.2.

We present a new proof within our framework as most of the arguments reappear

later on. For instance, the generalization of the second bound to the λ∗-regular case

in Section 4 relies on analogous reasoning.

In our next result, Proposition 5, we prove bounds which control the entire

distribution function F up to, respectively, p∗ and µ in terms of the boundary cases

Fµ,λ from Definition 1. In the monotone hazard rate case, a result of this type

is the main ingredient of Aggarwal et al. (2009) who study the welfare losses of

revenue-optimal mechanisms. The main difference between revenue-optimal and

welfare-optimal sales mechanisms, i.e., between auctions with and without reserve,

is that revenue-optimal mechanisms do not sell to bidders with valuations below the

reserve. The proposition provides a precise control on the resulting welfare losses

by bounding the distribution of low valuations in terms of the parameter λ.

Proposition 5. Let F be λ-regular for some λ < 1, λ 6= 0. Denote by µ the mean

of F and by p∗ the unique zero of v1, i.e., the reserve. Then the following bounds

are obtained:

1− F (x) ≥ 1− Fµ,λ(x)

for x ∈ [0, µ], and

1− F (x) ≥ 1− Fp∗,λ(x)

for x ∈ [0, p∗].

The proposition is again sharp for F = Fµ,λ. For the boundary cases Fµ,λ,

the optimal reserve price p∗ coincides with the mean µ. This holds as the virtual

valuations functions v1 are linear if vλ is constant. Therefore,21

0 = E[v1(X)] = v1(µ).

This explains why we obtain the same constants in the two inequalities of Proposition

4. For general λ-regular distributions, the ranking of p∗ and µ is ambiguous.22 It

20The same is true for the first bound in Proposition 5. See, for instance, Proposition 6.2 in
Chapter 4 of Barlow and Proschan (1981).

21The first equality is an elementary property of virtual valuations which holds whenever E[X]
is finite.

22One can obtain a clear ranking when virtual valuations are concave or convex by applying
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depends on the distribution which of the two bounds in Propositions 4 and 5 are

sharper.

The next proposition provides a sharp bound on the probability that a valua-

tion lies above the optimal monopoly profit. This result is a central ingredient in

Sundararajan and Yan (2015)’s analysis of robust mechanism design for risk-averse

sellers. Sundararajan and Yan (2015) prove the result separately for λ = 0 and

λ = 1.23

Proposition 6. Let F be λ-regular for some λ < 1, λ 6= 0. Denote by p∗ the unique

zero of v1 and by R∗ = p∗(1−F (p∗)) the optimal monopoly profit. Then the following

inequality holds:

1− F (R∗) ≥ Γλ

(
Γλ
(

1
1−λ

)
1− λ

)
.

For λ ∈ {0, 1}, the constant on the right hand side converges to the values 1/2

for λ = 1 and exp(− exp(−1)) ≈ 0.6922 for λ = 0 as identified by Sundararajan

and Yan (2015).24 The dependence of the lower bound on λ is shown in Figure 1.

In particular, we see that the worst-case sales probability with a posted price of R∗

is bounded away from zero across all values of λ. This is in contrast to the sales

probability of the risk-neutral, revenue-optimal reserve price which is depicted by

the other curve in the figure. Sundararajan and Yan (2015) show that the reserve

price R∗ is, in a sense, worst-case optimal for risk-averse sellers (who are afraid of

not selling the object). In particular, as R∗ is the optimal, risk-neutral expected

revenue, the proposition implies a bound on the fraction of expected revenue that is

lost by a risk-averse seller who implements R∗ as his posted price compared to the

risk-neutral benchmark.

Our next result provides a sharp bound between the expected value of F and the

supremum of p(1− F (p)). When selling to a single buyer, these two quantities can

Jensen’s inequality to 0 = E[v1(X)] and using the monotonicity of v1.
23See their Lemmas 18 and 19. They use different techniques of proof for the two results. Our

proof extends their proof for λ = 0 to general λ, thus highlighting the benefits of the unified
perspective provided by λ-regularity.

24Unlike most results in this section, this bound does not deteriorate at λ = 1.
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Figure 1: The lower bounds of Proposition 4 (solid line) and Proposition 6 (dashed
line) as functions of λ.

be interpreted as the expected welfare generated by a welfare-optimal mechanism

and the expected revenue of a revenue-optimal mechanism. In the terminology of

Kleinberg and Yuan (2013), the result shows that λ-regular distributions are always

c-bounded with an explicit value of the constant c.25

Proposition 7. Let F be λ-regular for some λ < 1, λ 6= 0. Denote by µ the mean

of F and by p∗ the unique zero of v1. Then we have the bound

µ ≤
(

1

1− λ

) 1
λ

sup
p
p(1− F (p)) =

(
1

1− λ

) 1
λ

p∗(1− F (p∗))

As welfare is larger than revenue, p∗(1−F (p∗)) ≤ µ, the proposition shows that

the two quantities always lie within an explicit, λ-dependent factor of each other.

Proposition 7 can be seen as a corollary of Proposition 5 in Anderson and Renault

(2003) where the result is phrased in the terminology of demand functions and

Cournot competition.26 A second result in this vein bounds the expected welfare

generated by selling with a given reserve price p against expected revenues. The

25Kleinberg and Yuan (2013) introduce c-boundedness as a third, separate assumption in addition
to 1-regularity and the hyperregularity condition discussed in Section 5.2. Proposition 7 provides
an elementary sufficient condition for c-boundedness.

26Anderson and Renault (2003) prove several related results but this is the only actual overlap.
The techniques of proof are also different since Anderson and Renault rely almost exclusively on
the (−λ)-concavity formulation of λ-regularity.
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result also applies to suboptimal values of p and can thus be applied in settings

where only an estimate of p∗ is available.

Proposition 8. Let F be λ-regular for some λ < 1, λ 6= 0. Denote by µ the mean

of F and by p∗ the unique zero of v1. Then we have the bounds

E
[
X 1{X≥p}

]
≤
(

1

1− λ

) 1
λ

p∗(1− F (p∗))

for all p ≥ 0, and, for p ≥ p∗,

E
[
X 1{X≥p}

]
≤
(

1 +
1

1− λ

)
p(1− F (p)).

This result coincides with Lemma 9 of Cole and Rao (2017). The monotone haz-

ard rate version of this result is a key ingredient in Dhangwatnotai et al. (2014), see

also Yan (2012).27 The proposition is the only consequence of the monotone hazard

condition used in Azar et al. (2014). The latter paper studies sales mechanisms

when only a sample from the bid distributions is available while the underlying dis-

tributions of valuations are unknown. The authors provide two sets of results, one

for the regular case under a symmetry assumption on the bidders, another under the

monotone hazard rate condition without the symmetry assumption. Proposition 8

extends the second set of results to the asymmetric, λ-regular case.

3.2 Bounds on Order Statistics

In this section, we show how order statistics can be handled using λ-regularity.

Order statistics frequently arise in auction settings but not only there. At the end

of the section, we show that λ-regularity also implies sharp upper bounds on Gini

indices and related quantities.

There are n independent random variables X1, . . . , Xn with distribution F . We

denote by Xk:n the kth largest of these, so that X1:n is the largest and Xn:n is the

smallest.28 The following lemma states a direct consequence of λ-regularity:

27Dhangwatnotai et al. (2014) combine the two inequalities into a single one with the worse
constant max(2, exp(1)) = exp(1) for λ = 0. Since the dependence on λ differs between the two
cases, we keep two separate inequalities. The first of the two inequalities is, of course, a direct
consequence of Proposition 7. It is stated here to facilitate comparisons with the literature.

28In particular, we follow the standard notation in auction theory rather than in statistics where
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Lemma 2. Let F be λ-regular for some λ < 1. Then, the sequence (an)n≥1 defined

by a1 = (λ− 1)E[X1] and, for n ≥ 2,

an = E[X2:n]− (1− λ)E[X1:n]

is increasing and concave.

The lemma leads to the following lower bound on the ratio of optimal revenues

and optimal welfare when selling a single asset to n bidders with i.i.d λ-regular

valuations. Recall that with n bidders optimal revenue is given by

R∗n = E[max(0, v1(X1:n))]

as shown in Myerson (1981). The welfare generated by a welfare-maximizing mech-

anism is given by E[X1:n] ≥ R∗n.

Proposition 9. Let F be λ-regular for some λ < 1. Then we have, for n ≥ 2, the

bound
R∗n

E[X1:n]
≥ E[X2:n]

E[X1:n]
≥ (1− λ)

(
1− E[X1]

E[X1:n]

)
.

In the proposition, the second inequality bounding second order statistics from

below is sharp. We see that λ-regularity with λ < 1 keeps the ratios on the left

hand sides bounded away from zero as n grows. Kleinberg and Yuan (2013) demon-

strate by a counterexample29 that the same revenue to welfare ratios may vanish

for 1-regular distributions and introduce an additional assumption, hyperregularity,

to ensure that it remains bounded away from zero. The proposition shows that

λ-regularity rules out counterexamples like this. We further discuss the relation

between hyperregularity and λ-regularity in Section 5.2.

Our final results study the behavior of smallest rather than largest order statis-

tics. We first show an upper bound on the larger out of two independent draws

from F in terms of the smaller. This result corresponds to Lemma 5 in Cole and

Rao (2017). Our proof is much shorter as it is based on classical tricks from the

reliability literature.

Xn:n would denote the largest order statistic.
29Roughly speaking, their example differs from boundary cases of 1-regularity only by a loga-

rithmic factor. The example is thus 1-regular but not λ-regular for any λ < 1.
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Proposition 10. Let F be λ-regular for some λ < 1. Then we have the chain of

inequalities

E[X1:2] ≤
3− λ
2− λ

E[X1] ≤
3− λ
1− λ

E[X2:2].

Again, this result is sharp for boundary cases of λ-regularity. For instance, for

λ = −1, one boundary case is the uniform distribution on [0, 1]. In this case, the

result boils down to the well-known chain of identities 2
3

= E[X1:2] = 4
3
E[X1] =

2E[X2:2]. As λ increases, the constants in the chain of inequalities become larger,

allowing for a greater spread between the smaller and larger out of two draws. A

variation of the argument behind the previous result implies an upper bound on the

generalized Gini indices of Donaldson and Weymark (1983), see Kleiber and Kotz

(2003) for background.

Proposition 11. Let F be λ-regular for some λ < 1 and let n ≥ 2. Then we have

the bound

Gn = 1− E[Xn:n]

E[X1]
≥ n− 1

n− λ
.

Here, G2 coincides with the classical Gini index which measures economic in-

equality by comparing the wealth of the poorer of two people to the average wealth

in the population. The generalized index Gn replaces the poorest out of two with

the poorest out of n people, thus shifting attention to the extremes of the distribu-

tion. Increasing λ increases the upper bound on economic inequality that is possible

under a λ-regular distribution of wealth. Again, the bound is sharp for all n at the

boundary cases of λ-regularity.30

4 λ∗-regularity

In this section, we show that some of our results already hold under a weaker notion

of regularity than λ-regularity. This includes, in particular the bounds on sales

probabilities from Proposition 4 which had been applied frequently for the case

λ = 0.

30Donaldson and Weymark (1983) actually define Gn with a continuous parameter n. Our result
also applies to this case but the term E[Xn:n] in the definition needs to be replaced by it continuous
analogue, the right hand side of equation (8) below.
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The reliability literature (e.g. Barlow and Proschan, 1981) has explored various

weaker forms of the monotone hazard rate condition which retain the exponential

distribution as a boundary case but place less rigid local restrictions on the shape

of the hazard rate. One prominent example is the increasing failure rate average

(IFRA) condition. When moving beyond the exponential distribution as a refer-

ence distribution, IFRA distributions turn into the class of distributions which are

dominated by a reference distribution in terms of the star order31 (rather than the

stronger convex-transform order we had above). The following proposition defines

λ∗-regularity, the analogous weakening of λ-regularity, and introduces some equiva-

lent formulations:

Proposition 12. The following claims are equivalent for any λ 6= 0 and x > 0:

(i) F is λ∗-regular, i.e., Hλ(x)
x

is increasing in x.

(ii) For all x,

Hλ(x) ≤ rλ(x) · x.

(iii) For all x and θ ∈ [0, 1],

Hλ(θ · x) ≤ θ ·Hλ(x).

Since Hλ(x) = G−11,λ(F (x)), λ∗-regularity is the same as F being dominated by

G1,λ in the star order which is defined as monotonicity of G−11,λ(F (x))/x. From part

(i) of the proposition, we see that at the boundary of λ∗-regularity the function

Hλ is linear with Hλ(0) = 0. λ∗-regularity thus has the same boundary cases as

λ-regularity. Parts (ii) and (iii) of the proposition always hold when Hλ is convex.

Thus, λ∗-regularity is implied by λ-regularity. To understand the difference between

λ-regularity and λ∗-regularity better, we write part (iii) of the proposition as

Hλ(θ · x+ (1− θ) · 0) ≤ θ ·H(x) + (1− θ)H(0).

Instead of assuming convexity – and thus global validity of Jensen’s inequality –

λ∗-regularity merely requires that Jensen’s inequality holds when one of the points

is zero. Another way to see that λ∗-regularity is connected to “convexity in reference

31See Shaked and Shanthikumar (2007) for an introduction and various implications.
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to zero” is to write (ii) as

Hλ(x)−H ′λ(x) · x ≤ Hλ(0) = 0.

Thus, the tangent to Hλ at a point x need not lie below the graph of Hλ globally,

but it must do so at zero. Looking through Section 3, we see that some of the

proofs remain valid under λ∗-regularity since convexity in reference to zero is the

only consequence of λ-regularity we use.32

Corollary 1. Let F be λ∗-regular for some λ < 1, λ 6= 0, and suppose there exists

a unique p∗ with v1(p
∗) = 0. Then we have the bounds

P (X > p∗) ≥ (1− λ)
1
λ ,

for x ∈ [0, p∗]

1− F (x) ≥ 1− Fp∗,λ(x),

and

1− F (R∗) ≥ Γλ

(
Γλ
(

1
1−λ

)
1− λ

)
where R∗ = p∗(1− F (p∗).

Notice that we have to assume existence and uniqueness of p∗ separately under

λ∗-regularity, since Proposition 3 is no longer available. Similarly, λ∗-regularity does

not imply Myerson’s regularity.

5 λ-Antiregularity and Hyperregularity

5.1 λ-Antiregularity

This section explores which of the results of the previous sections have counterparts

in the λ-antiregular case in which the function vλ is decreasing instead of increasing.

For λ1 < λ2, λ2-antiregularity implies λ1-antiregularity. This direction of impli-

cations is opposite to the one in the λ-regular case. 0-antiregularity (decreasing

32Elsewhere, we also exploit other convexity properties of Hλ so that assuming λ∗-regularity
is not sufficient. For instance, in the proof of Proposition 7 we use convexity around p∗ when
applying the inequality Hλ(x) ≥ Hλ(p∗) +H ′λ(p∗)(x− p∗).
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failure rate) implies (−1)-antiregularity (decreasing density), while 0-regularity (in-

creasing failure rate) implies 1-regularity (Myerson regularity). λ1-antiregularity

and λ2-regularity can only hold simultaneously if λ1 ≤ λ2. If a distribution is simul-

taneously (−1)-antiregular and 1-regular, it has sufficiently heavy tails in the sense

of a decreasing density, and not too heavy tails in the sense of Myerson regularity.

Therefore, in many cases, assuming a decreasing density generates bounds in the

opposite direction to those implied by λ-regularity.

As antiregularity only guarantees that tails are sufficiently heavy, it cannot guar-

antee integrability as in Proposition 2 (i), or existence and uniqueness of optimal

reserve prices as in Proposition 3. We thus assume for the remainder of this section

that distributions are 1-regular, and possess a finite expected value and a unique

optimal reserve price. We next go through the results from the λ-regular case step

by step, highlighting what happens when replacing λ-regularity by λ-antiregularity.

In all cases, the proofs follow directly from those for the λ-regular case.

• Lemma 1 does not rely on λ-regularity and continues to hold. The boundary

cases of Definition 1 are both λ-regular and λ-antiregular.

• The equivalences in Proposition 1 continue to hold with the following modifica-

tions: vλ being decreasing is equivalent to rλ being decreasing, the expression

in part (iii) being convex, and G−11,λ(F (x)) being concave.

• Conversely to Proposition 2 (ii), increasing convex transformations of a random

variable with a λ-antiregular distribution have a λ-antiregular distribution.

• The five lower bounds in Proposition 4, Proposition 5 and Proposition 6 turn

into upper bounds under antiregularity. The same is true for the analogous

generalization of Corollary 1.

• The upper bound in Proposition 7 turns into a lower bound. Proposition 8

does not have a direct converse in the antiregular case since the estimates are

not sharp.

• The sequence defined in Lemma 2 becomes decreasing and convex. Accord-

ingly, the lower bound on the ratio of second and first order statistics in Propo-
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sition 9 is reversed. The lower bound on expected revenues in optimal auctions

is not reversed however.

• The chain of inequalities in Proposition 10 is reversed and the lower bound in

Proposition 11 becomes an upper bound.

5.2 Hyperregularity

Kleinberg and Yuan (2013) propose an alternative strengthening of Myerson’s reg-

ularity which they call hyperregularity. They assume that, in addition to F being

1-regular, the function v1(x)/x is increasing, or, equivalently the rate

x · r0(x) =
xf(x)

1− F (x)

is increasing.33 This monotonicity condition is well-known in the revenue manage-

ment literature. There, it was introduced by Lariviere and Porteus (2001) under

the name increasing generalized failure rate condition (IGFR) as a sufficient condi-

tion for unimodality of x(1 − F (x)). We refer to Banciu and Mirchandani (2013)

for a recent contribution with many references. Lariviere (2006) provides a sum-

mary of structural results about IGFR distributions, showing, for example, that the

IGFR property is equivalent to the distribution of log(X) satisfying the classical

IFR condition.

Ziya et al. (2004) provide a comparison between IGFR and Myerson regularity

from the perspective of revenue management, concluding that, in general, neither

condition is to be preferred over the other.34 IGFR is weaker than Myerson’s regu-

larity in the sense that it holds for distributions with arbitrarily heavy polynomial

tails.

Yet it is more restrictive in the sense that it may disappear under horizontal

shifts of the distribution. For example, consider the parametric class of distributions

F (x) = 1 − (x + a)−b with support (1 − a,∞) where a < 1 and b > 0. We have

33Neither of these assumption ensures integrability. To this end, Kleinberg and Yuan (2013)
introduce the third assumption of c-boundedness which requires that the result of our Proposition
7 holds for some constant c, i.e., E[X] ≤ c p∗(1− F (p∗)).

34Ziya et al. (2004) also point out earlier papers from this literature which had “reinvented”
Myerson regularity in the formulations (ii) and (iii) from Proposition 1, Bitran and Mondschein
(1997) and Cachon and Lariviere (2001).
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vλ(x) = (λ − 1
b
)x + a

b
. F is thus λ-regular for all a and all b ≥ 1/λ. In particular,

F is Myerson regular for b ≥ 1. The location parameter a does not matter, but the

heaviness of tails, parametrized by b, does. In contrast, whether the distributions

are IGFR, i.e., whether v1(x)/x is increasing or decreasing, depends only on the sign

of the location parameter a. F is IGFR whenever a ≥ 0, i.e., when the lower end of

the support lies between 0 and 1.35

Kleinberg and Yuan (2013) show that assuming hyperregularity has some attrac-

tive implications in auction theory, see their Section 5. Yet, as shown in Section

3.2 above, their main argument for the unavoidability of assuming hyperregularity

does not apply to distributions which are λ-regular for some λ < 1. Assuming λ-

regularity thus has the potential of replacing their three assumptions (regularity,

IGFR and c-boundedness) by a single one.

6 λ-Regularity in Quantity Space

Bulow and Roberts (1989) show that Myerson regularity becomes a classical con-

cavity condition on a monopolist’s revenue if the price-setting problem studied so

far is transformed into a problem of choosing quantities. This section provides a

brief and informal discussion of what λ-regularity means under this transformation.

Let us interpret the function 1−F (p) as a demand curve and consider a monop-

olistic seller who sets price p. The seller’s revenue r(p), consumer surplus c(p) and

social welfare s(p) (the sum of the former two) can then be written, respectively, as

r(p) = p(1− F (p)), c(p) =

∫ ∞
p

(x− p)f(x)dx =

∫ ∞
p

1− F (x)dx.

and

s(p) = p(1− F (p)) +

∫ ∞
p

1− F (x)dx.

Following Bulow and Roberts (1989), let us substitute q = 1 − F (p) and interpret

1−F (p) as the quantity q ∈ [0, 1] sold when the unit price is p. Thus, we can write

35These considerations illustrate the special role of the equal revenue distribution a = 0, b = 1,
which is the only distribution at the boundary of both IGFR and Myerson’s regularity. It is also
a boundary case of the third related assumption discussed by Ziya et al. (2004), concavity of
x(1− F (x)).

24



the price per unit when selling the quantity q as P (q) = F−1(1 − q). Under this

transformation, revenue R(q), consumer surplus C(q) and social welfare S(q) can be

written as

R(q) = qP (q), C(q) = −
∫ q

0

y P ′(y)dy and S(q) =

∫ q

0

P (y)dy.

As P is decreasing, social welfare S is always concave in quantity. The generalized

increasing virtual valuations formulation of λ-regularity turns into the condition

that

hλ(q) = λP (q) + qP ′(q)

is decreasing in q.36 For λ = 1, we recover the result that R′(q) = h1(q) is decreasing,

implying that the revenue R(q) is concave in quantity q. For λ = 0, the condition

turns into C ′(q) = −h0(q) being increasing. The monotone hazard rate assumption

thus implies that consumer surplus C(q) is convex in q. Due to the concavity of S

and the relation R(q) = S(q) − C(q), this is a sufficient condition for concavity of

R. For general λ < 1, we can write

hλ(q) = R′(q)− (1− λ)S ′(q).

λ-regularity thus turns into a condition that revenue is sufficiently concave, requiring

that revenue remains concave if social welfare times a positive, λ-dependent constant

is subtracted.

7 Conclusion

Traditionally, properties like Myerson regularity and the monotone hazard rate con-

dition were viewed as qualitative features that a distribution either fulfills or does

not fulfill. Interpreting the smallest λ for which a distribution is λ-regular as an

index of regularity, allows for a more quantitative perspective. λ-regularity replaces

the question whether a distribution is Myerson regular. It focuses instead on how

Myerson regular a distribution is. Section 3 demonstrates that with regard to the

36Monotonicity of generalized hazard rates turns into the equivalent condition that q1+λP ′(q) is
decreasing.
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performance of auctions and sales mechanisms, the answer often depends explicitly

on the value of λ. Moreover, the results are sharp at boundary cases of λ-regularity.

In a sense, λ-regularity is an almost näıve strengthening of Myerson regularity,

replacing weak monotonicity by monotonicity with a lower bound on the slope. Yet,

the concept has deep connections to the literatures on stochastic orders and on gen-

eralized concavity. In Section 3.1, we provided several pointers to other applications

in which λ-regularity helps gaining a better understanding of how results depend on

the regularity of distributions. We are convinced that there are many more contexts

in which the concept will prove fruitful.

A Proofs

We begin with an elementary calculation that is used in several of our proofs:

Lemma 3. Let a ≥ 0 and b > 0 and λ < 1 with λ 6= 0 be three real numbers. When

λ < 0 assume in addition a < − 1
λ

. Then it holds that∫ ∞
0

Γλ(a+ bx)dx =
Γλ(a)1−λ

(1− λ)b
(2)

Proof of Lemma 3. For λ ∈ (0, 1), the claim follows from

∫ ∞
0

Γλ(a+ bx)dx =
1

b

∫ ∞
a

(1 + λx)−
1
λdx =

1

λb

∫ ∞
1+λa

x−
1
λdx =

(1 + λa)−
1−λ
λ

(1− λ)b
.

For λ < 0, we obtain the same result from the following modified argument:∫ ∞
0

Γλ(a+ bx)dx =
1

b

∫ − 1
λ

a

(1 + λx)−
1
λdx =

−1

λb

∫ 1+λa

0

x−
1
λdx =

(1 + λa)−
1−λ
λ

(1− λ)b
.

Proof of Lemma 1. We define

Hλ(x) =
(1− F (x))−λ − 1

λ
. (3)

Since this expression satisfies Hλ(0) = 0 and H ′λ(x) = rλ(x), this definition is

consistent with the integral for Hλ given in the lemma. Applying Γλ on both sides
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of (3) gives 1−F (x) = Γλ(Hλ(x))). Finally, notice that Hλ takes values in [0,− 1
λ
] for

λ < 0 and in [0,∞) for λ > 0, thus falling into the regions where Γλ is non-zero.

Proof of Proposition 1. Equivalence of (i-iii) follows from the fact that all three

claims correspond to the first order condition

(1 + λ)f(x)2 + (1− F (x))f ′(x) ≥ 0

for all x ∈ (α, ω). Equivalence of (iii) and (iv) follows from the fact that37

G−11,λ(F (x)) =
(1− F (x))−λ − 1

λ
.

which coincides with Hλ by (3).

Proof of Proposition 2. (i) is well-known for the boundary cases Fµ,λ and Gρ,λ which

are simply rescaled Pareto distributions. The proof for general F proceeds in two

steps: We first show that λ-regularity with λ < 1 implies existence of a finite mean µ.

Existence of higher moments is then deduced from a comparison with Fµ,λ. Assume

F is not a boundary case so that Hλ is not globally linear. Since Hλ is convex

and increasing with Hλ(0) = 0, we can find a constant ρ > 0 such that ρx and

H intersect exactly twice on R+, in 0 and at some s > 0. By convexity, we have

H(x) ≥ ρx for x ≥ s. We can thus bound the mean of F by

µ =

∫ ∞
0

1− F (x)dx =

∫ ∞
0

Γλ(Hλ(x))dx ≤ s+

∫ ∞
s

Γλ(ρx)dx ≤ s+
1

ρ(1− λ)
<∞.

where the final summand on the right hand side is the mean of Gρ,λ. Notice next38

that the convex function Hλ and the corresponding (linear) function Hµ,λ(x) =

x
µ(1−λ) of Fµ,λ have at most one intersection at a positive x where Hλ intersects Hµ,λ

from below. Accordingly, there exists x0 such that 1−F (x) ≥ 1−Fµ,λ(x) for x ≤ x0

while the converse inequality holds for x ≥ x0. Combining this observation with∫ ∞
0

1− F (x)dx−
∫ ∞
0

1− Fµ,λ(x)dx = 0

37Notice that the choice of ρ = 1 is arbitrary here. Dominance of G1,λ in the convex-transform
order is equivalent to dominance of Gρ,λ for any ρ > 0.

38The remainder of the proof of (i) is adapted from Theorem 4.8 and Corollary 4.9 in Barlow
and Proschan (1965).
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shows that ∫ ∞
0

ϕ(x)(1− F (x))dx−
∫ ∞
0

ϕ(x)(1− Fµ,λ(x))dx ≤ 0

for any increasing function ϕ(x) by Lemma 7.1 of Chapter 4 in Barlow and Proschan

(1981). To complete the proof of (i), it suffices to note that choosing ϕ(x) = pxp−1

turns the latter inequality into a bound between the pth moments of F and Fµ,λ

since

E[Xp] =

∫ ∞
0

p xp−1(1− F (x))dx.

Existence of moments for Fµ,λ thus implies existence of moments for F . It remains

to prove part (ii) of the proposition. Since h is strictly increasing and concave, its

inverse h−1 exists and is convex. The cumulative distribution function of h(X) is

given by Fh(x) = F (h−1(x)). By Proposition 1, λ-regularity of F is equivalent to

convexity of Hλ(x) = G1,λ(F (x)). Since the composition of two increasing, convex

functions is convex, we find that G1,λ(Fh(x)) = Hλ(h
−1(x)) is convex, implying

λ-regularity of Fh.

Proof of Proposition 3. Since vλ is increasing for some λ < 1, v1(x) = (1 − λ)x +

vλ(x) is strictly increasing over (α, ω), implying that v1 has at most one zero. By

Proposition 2, F possesses a finite mean and thus

E[v1(x)] =

∫ ∞
0

xf(x)dx−
∫ ∞
0

1− F (x)dx = 0,

so that v1 must have at least one zero which lies in the interior of the support.

Proof of Proposition 4. Since Hλ is convex, we have Hλ(µ) ≤ E[Hλ(X)] by Jensen’s

inequality. We claim that E[Hλ(X)] = 1
1−λ . Using that Γλ is decreasing then yields

1− F (µ) = Γλ(Hλ(µ)) ≥ Γλ(E[Hλ(X)]) = Γλ

(
1

1− λ

)
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which is the first inequality. To see the claim, we write

E[Hλ(X)] =

∫ ∞
0

Hλ(x)f(x)dx =

∫ ∞
0

∫ x

0

rλ(y)f(x)dydx

=

∫ ∞
0

rλ(y)

∫ ∞
y

f(x)dxdy =

∫ ∞
0

(1− F (y))−λf(y)dy

where the last step uses the definition of rλ. The substitution u = F (y) then gives

E[Hλ(X)] =

∫ 1

0

(1− u)−λdu =
1

1− λ
.

For the second inequality, we rewrite the condition v1(p
∗) = 0 into

p∗rλ(p
∗) = (1− F (p∗))−λ = Γλ(Hλ(p

∗))−λ = 1 + λHλ(p
∗), (4)

using the definitions of rλ and Γλ. Since Hλ is convex with H ′λ = rλ and Hλ(0) = 0,

we obtain by (4) that

Hλ(p
∗) ≤ p∗rλ(p

∗) = 1 + λHλ(p
∗). (5)

Solving this bound forHλ(p
∗) yieldsHλ(p

∗) ≤ 1
1−λ . Applying the decreasing function

Γλ to both sides of this inequality completes the proof since 1−F (p∗) = Γλ(Hλ(p
∗)).

Proof of Proposition 5. We give a combined proof of both assertions. By Proposi-

tion 4, we have Hλ(0) = 0 and Hλ(z) ≤ 1
1−λ for z ∈ {µ, p∗}. Convexity of Hλ thus

implies

Hλ(x) ≤ x

z(1− λ)

for x ∈ [0, z]. Applying the decreasing function Γλ to this inequality yields

1− F (x) = Γλ(Hλ(x)) ≥ Γλ

(
x

z(1− λ)

)
= 1− Fz,λ(x)

by Definition 1.

Proof of Proposition 6. We need to show an upper bound on Γλ(Hλ(p
∗Γλ(Hλ(p

∗)))).

Since Hλ is convex with Hλ(0) = 0 and since Γλ(Hλ(p
∗)) = 1 − F (p∗) ∈ (0, 1), we
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obtain

Hλ (p∗Γλ(Hλ(p
∗))) ≤ Hλ(p

∗) · Γλ(Hλ(p
∗)) = Φ(Hλ(p

∗)).

where Φ(x) = x · Γλ(x). Since Φ has derivative

Φ′(x) = Γλ(x)

(
1− x

1 + λx

)
,

Φ is increasing for x ≤ (1− λ)−1 and decreasing for x ≥ (1− λ)−1. We obtain39

Hλ (p∗Γλ(Hλ(p
∗))) ≤ Φ(Hλ(p

∗)) ≤ Φ

(
1

1− λ

)
=

1

1− λ
Γλ

(
1

1− λ

)
.

Applying the decreasing function Γλ on both sides of the inequality completes the

proof.

Proof of Proposition 7. Since Hλ is convex with H ′λ = rλ, we have Hλ(x) ≥ Hλ(p
∗)+

rλ(p
∗)(x− p∗) and thus

µ =

∫ ∞
0

1− F (x)dx =

∫ ∞
0

Γλ(Hλ(x))dx ≤
∫ ∞
0

Γλ(Hλ(p
∗) + rλ(p

∗)(x− p∗))dx.

The constants a = Hλ(p
∗) − p∗rλ(p∗) and b = rλ(p

∗) are non-negative by (5). For

λ < 0, we further have a ≤ Hλ(p
∗) ≤ − 1

λ
as noted in the proof of Lemma 1.

Applying Lemma 3 with these constants a and b thus yields

µ ≤ Γλ(Hλ(p
∗)− p∗rλ(p∗))1−λ

(1− λ)rλ(p∗)
. (6)

By (4), we have p∗rλ(p
∗) = 1 + λHλ(p

∗) and thus

Γλ(Hλ(p
∗)− p∗rλ(p∗)) = Γλ((1− λ)Hλ(p

∗)− 1) = (1− λ)−
1
λ Γλ(Hλ(p

∗))

where the final step uses the definition of Γλ. (6) can thus be written as

µ ≤ (1− λ)
λ−1
λ

(1− λ)
· Γλ(Hλ(p

∗))1−λ

rλ(p∗)
= (1− λ)−

1
λ · p∗Γλ(Hλ(p

∗))

where the last step follows from (4). As Γλ(Hλ(p
∗)) = 1 − F (p∗), the proof is

complete.

39This bound is sharp at the boundary cases of λ-regularity which satisfy Hλ(p∗) = 1
1−λ .
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Proof of Proposition 8. The first bound follows directly from Proposition 7 and

E[X1{X≥p}] ≤ µ. For the second, notice first that by partial integration

E[X1{X≥p}] =

∫ ∞
p

xf(x)dx = p(1− F (p)) +

∫ ∞
p

1− F (x)dx.

It thus suffices to bound the second summand by (1−λ)−1 p(1−F (p)). By convexity

of Hλ, we obtain∫ ∞
p

1− F (x)dx =

∫ ∞
p

Γλ(Hλ(x))dx ≤
∫ ∞
p

Γλ(Hλ(p) + rλ(p)(x− p))dx

=

∫ ∞
0

Γλ(Hλ(p) + rλ(p)y)dy =
Γλ(Hλ(p))

1−λ

(1− λ)rλ(p)
, (7)

where the last step uses Lemma 3 with constants a = Hλ(p) and b = rλ(p). a and b

are non-negative, and, as argued in the proof of Lemma 1, we have a ≤ − 1
λ

for λ < 0.

Arguing as in (4), we conclude from p ≥ p∗ that v1(p) ≥ 0 and thus Γλ(Hλ(p))
−λ ≤

p rλ(p). Combining this estimate with (7) yields the desired inequality∫ ∞
p

1− F (x)dx ≤ pΓλ(Hλ(p))

1− λ
=
p(1− F (p))

1− λ
.

Proof of Lemma 2. For any increasing function h with E[h(X1)] <∞, the sequence

E[h(X1:n)] is increasing and concave in n, since it is the sequence of first order

statistics of the transformed random variables h(Xi), and since sequences of first

order statistics are always increasing and concave, see Szech (2011), Lemma 1. The

claim of the lemma follows from this observation by choosing the increasing function

as h(x) = vλ(x). To see this, notice first that a1 = E[vλ(X1:1)] = (1 − λ)E[X].

Moreover, denote by F1:n(x) = F (x)n, f1:n(x) = nF (x)n−1f(x) the distribution

function and density of X1:n and by F2:n(x) = F1:n(x) + n(1 − F (x))F (x)n−1 the
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distribution function of X2:n.40 Then we obtain

an = E[vλ(X1:n)] = λE[X1:n]−
∫ ∞
0

(1− F (x))

f(x)
· f1:n(x)dx

= λE[X1:n] +

∫ ∞
0

F2:n(x)− F1:n(x)dx = λE[X1:n]− (E[X1:n −X2:n])

for n ≥ 2 which completes the proof.

Proof of Proposition 9. The first inequalityR∗n ≥ E[X2:n] simply restates that revenue-

optimal auctions dominate auctions without reserve in terms of revenue. The second

inequality is a rearrangement of the implication an ≥ a1 of Lemma 2.

Proof of Proposition 10. We begin with the second inequality between the mean and

the minimum. Notice first that for any θ > −1 we have∫ ∞
0

(1− F (x)θf(x)dx =

∫ 1

0

(1− u)θdu =
1

1 + θ
.

Therefore, the function

g(x) =

(
2− λ
1− λ

(1− F (x))− 1

)
(1− F (x))−λf(x)

satisfies
∫∞
0
g(x)dx = 0. Moreover, by monotonicity and positivity of 1 − F , g

switches signs exactly once, from positive to negative. By Lemma 7.1 of Chapter 4

in Barlow and Proschan (1981), we thus have for any decreasing function h that

0 ≤
∫ ∞
0

h(x)g(x)dx.

Choosing the decreasing function h as h(x) = 1
rλ(x)

yields

0 ≤ 2− λ
1− λ

∫ ∞
0

(1− F (x))2dx−
∫ ∞
0

1− F (x)dx =
2− λ
1− λ

E[X2:2]− E[X1].

The inequality for the maximum follows from the one for the minimum via

E[X1:2] = 2E[X1]− E[X2:2] ≤
(

2− 1− λ
2− λ

)
E[X1] =

3− λ
2− λ

E[X1]

40For background see David and Nagaraja (2003).
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Proof of Proposition 11. Notice that the distribution function of Xn:n is Fn:n(x) =

1− (1− F (x))n and thus

E[Xn:n] =

∫ ∞
0

(1− F (x))ndx. (8)

The proof of the proposition is analogous to the bound for X2:2 in Proposition 10

except that we choose the function g as

g(x) =

(
n− λ
1− λ

(1− F (x))n−1 − 1

)
(1− F (x))−λf(x).

Proof of Proposition 12. Equivalence of (i) and (ii) follows since the first order con-

dition associated with (i),

0 ≤ H ′λ(x)x−Hλ(x)

x2
=
rλ(x)x−Hλ(x)

x2

is equivalent to (ii). For y ≤ x, we can choose θ = y/x ∈ [0, 1]. (i) and (iii) are then

both the same as Hλ(y)/y ≤ Hλ(x)/x for all y ≤ x.

Proof of Corollary 1. The first inequality in the corollary comes from Proposition

4 in the λ-regular case. The only consequence of λ-regularity used in its proof is

Hλ(p
∗) ≤ p∗rλ(p

∗). This holds under λ∗-regularity by Proposition 12 (ii). The second

inequality is proved in Proposition 5. The proof is based on the first inequality and

the fact that Hλ(x) ≤ x
z
Hλ(z) for x ≤ z, the definition of λ∗-regularity. The third

inequality is from Proposition 6. The only application of λ-regularity in the proof

follows from part (iii) of Proposition 12 with θ = Γλ(Hλ(p
∗)) and x = p∗.
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