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the stronger incentives for information release. We generalize the dispersive
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1 Introduction

This paper studies the effects of information release. We consider symmetric, in-

dependent private value auctions with multiple, identical objects and unit demand.

The seller compares running an auction with either of two distributions of bidders’

valuations. This abstract setting captures many models of information release. For

instance, the two distributions could be the prior and posterior distributions of (con-

ditionally expected) valuations associated with a signal that the bidders receive. In

that case, the posterior is a mean-preserving spread of the prior. Information re-

lease increases the dispersion of expected valuations in the sense of the convex order.

This implies that with sufficiently many bidders, not only welfare, but also seller’s

revenue increases through information release. Yet one or the other will react more

strongly. We characterize which of the two is the case.

Alternatively, the two distributions could be posteriors associated with two different

signals. In that case, there is not necessarily a ranking in convex order. Our analysis

determines in such situations which posterior would be more favorable, from the

welfare perspective compared to the seller’s revenue perspective.

A welfare maximizer incorporates bidders’ aggregated rents into his calculation,

while a revenue-maximizing seller focuses on the selling price. Understanding how

welfare and revenue incentives relate to each other therefore requires a thorough

understanding of the behavior of order statistics. In case of a one-object auction, the

first and second order statistics, i.e. the highest and the second highest valuations,

and the difference between the two, are crucial. In multi-object auctions, more of

the highest order statistics are relevant. If several prizes, like grants or promotions,

are “auctioned off” to applicants in order to reward those who exert the highest

efforts (bids), efforts of several applicants near the top matter.1

In addition to focusing on one-object auctions, the previous literature has typically

modeled information release as an increase in the variability of valuations in the sense

of the dispersive order (Ganuza and Penalva, 2010).2 If the dispersive order holds, all

1For example, Harvard University selected 2,000 students out of 34,000 applicants for its class
of 2018; see https://college.harvard.edu/admissions/admissions-statistics.

2A related literature studies the problem of information acquisition in auctions from the bid-
der’s perspective, e.g., Persico (2000). In there, a bidder compares how different signals affect
his valuation estimate. We study the seller’s problem in which information release transforms a
distribution of unknown valuation estimates into another. Formally, information acquisition is
thus a rather different problem that requires different statistical tools such as Blackwell’s (1951)
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order statistics lie further apart under one distribution compared to the other. This

is a restrictive requirement leading to clear-cut results. Welfare always benefits more

from the introduction of such a more dispersed distribution than seller’s revenue. Yet

many prominent situations of information release, e.g. refinements of information

partitions, do not fit into this framework. Further, in many applications, the control

of lower order statistics is not very relevant. As we will see, with some more bidders

than objects, our analysis does not hinge at all on the behavior of the lower tails of

the distributions.

Therefore, we introduce two new classes of stochastic orders that lead to a more

flexible and directed control of the behavior of order statistics, the k- and k-m-

dispersion orders. Increased variability in the sense of k-dispersion implies that the

k highest order statistics move further apart through information release. Increased

variability in the sense of k-m-dispersion implies the same conclusion if the overall

number of bidders n is sufficiently large, n > k + m. Therefore, k-m-dispersion

captures more distributions than k-dispersion. The latter can be seen as a special

case. If it applies, comparisons hold independent of the number of bidders. Both

concepts extend the traditional dispersive order, and thus apply to more distribu-

tions. A ranking in the dispersive order implies the same ranking in k- and also in

k-m-dispersion.

For finite distributions, we obtain completeness in the sense that any two distribu-

tions can be compared under k-m-dispersion if there are sufficiently many bidders.

With this measure, we classify when information release increases or decreases the

variability of valuations in k-m-dispersion, implying either a strengthening or a

softening of competition. Consequently, a welfare maximizer will have stronger or

weaker incentives to release information than a revenue maximizing seller. So far,

only classes of distributions in which welfare incentives provide stronger incentives

than seller’s revenue have been classified, compare Ganuza and Penalva (2010).

We apply our theory to auctions in which information release is modeled in terms

of information partitions. Bidders do not know their true valuations, yet they know

which interval of a distribution contains their valuation. Information release renders

these intervals finer. This is a prominent model of information release in economic

theory (see Bergemann and Pesendorfer, 2007) that is not tractable with the tradi-

tional dispersive order. k-m-dispersion enables us to draw clear conclusions about

sufficiency or Lehmann’s (1988) efficiency of signals.
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multi-object auctions with sufficiently many bidders. Information release decreases

bidders’ rents if and only if information affects the bidders with the highest valua-

tions.

In a second classical model of information release due to Lewis and Sappington

(1994), each bidder’s signal equals his valuation with some transmission probability

while it is pure noise otherwise. This model has been applied to auctions, e.g., by

Ganuza and Penalva (2010) and Shi (2012). We study an extension of this model in

which signal quality is heterogeneous and type-dependent. While standard concepts

such as the dispersive order are not applicable, k-m-dispersion provides a complete

picture of the comparative statics of information release: Improved information

transmission often relaxes competition between bidders in this setting. Yet the

opposite can happen as well. Specifically, increases in the transmission probability

of high valuations can intensify competition at the top.

Our results also contribute to understanding the impact of targeted advertising

on revenues in auctions, see Hummel and McAfee (2015).3 Beyond auctions, our

techniques apply to other fields such as reliability theory and risk management where

worst realizations of distributions matter. Differences between order statistics are

also crucial in matching markets. Analyzing expected matches between firms and

workers, or men and women, requires to control distances between order statistics

not only at the top, but also on lower levels of a distribution. Another field of

application – beyond the scope of this paper – may be the measurement of inequality,

where distances from the poorest (or the richest) to the middle income quantiles of

a population are of specific interest.4 For example, recent developments in Western

countries such as the US suggest that a focus on the distances between the richest

400 families and the middle class could help to define educational goals for the next

decades.5

Related Literature

This paper is related to several contributions in the literatures on auctions and on

stochastic orders.6 Our auction-theoretic applications generalize results of Ganuza

3For a broader picture of the online advertising market, see Athey et al. (2014).
4See, e.g., Foster and Shneyerov (2000) for a contribution in that literature which also discusses

local properties of inequality orders.
5See “America’s elite. An hereditary meritocracy,” The Economist, 01/24/2015.
6For introductions to these two fields, see Krishna (2002) and Shaked and Shanthikumar (2007).
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and Penalva (2010) and thus contribute to the literature on information in auctions

and mechanism design.7 Jia et al. (2010) study information release in auctions

when bidders know parts of their valuations and the other additive parts can be

disclosed. They illustrate that the comparative statistics of bidders’ revenues are

intricate and conclude that “no illuminating necessary condition seems possible.”

This is the problem we address.8

Our analysis builds on a result of Li and Shaked (2004) who prove one of the main

properties of the k-dispersion order without explicitly introducing this order.9 We

provide new insights on k-dispersion and generalize it to k-m-dispersion. Concep-

tually, k-m-dispersion goes beyond k-dispersion. In contrast to the latter, k-m-

dispersion is not intended as a middle ground between the rigid dispersive order

and the weaker convex order. Instead, k-m-dispersion focuses on the upper tails of

distributions. Therefore, it can be applied even if a ranking according to the convex

order is not possible. Further, if one distribution is a mean-preserving spread of

another, i.e., if the convex order applies, high order statistics need not lie further

apart under the more “spread out” distribution. k-m-dispersion can thus hold in

one or in the other direction if the convex order is fulfilled.

As the k-dispersion order coincides with the excess wealth order in the case k =

1, our results are also related to two contributions from the operations research

literature which apply the excess wealth order to auctions, Li (2005) and Xu and

Li (2008). Analyzing the case k > 1 allows us to address many questions which

are not tractable under the excess wealth order. Paul and Gutierrez (2004) provide

several results related to ours based on the star order. Yet their results stating

that differences of order statistics can be controlled in terms of the star order are

incorrect as is shown in Xu and Li (2008).10

Outline

Section 2 introduces our model and discusses the scope and limitations of model-

ing information release in terms of the dispersive order. Section 3 introduces our

7For a survey, see Bergemann and Välimäki (2006).
8Stochastic orders, especially the dispersive order, have also been applied to study other ques-

tions concerning auctions and related contexts, see, for instance, Johnson and Myatt (2006), Szech
(2011), Mares and Swinkels (2014), Kirkegaard (2014), and the references therein.

9Compare Proposition 2.
10This incorrect result is also cited in Shaked and Shanthikumar (2007) as Theorem 4.B.19.
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new stochastic orders and their key properties. We provide some practical suffi-

cient conditions for applications, and show that k-m-dispersion implies a complete

ordering on finite distributions. Section 4 presents our main results on information

release in multi-object auctions, first in the general case and then in the applica-

tions of information partitions and heterogeneous signal quality. Section 5 sketches

further economic applications of our methods and presents additional properties of

k-dispersion. Section 6 concludes. All proofs are in the appendix.

2 The Setting

2.1 Auction Model with Information Release

We study a symmetric independent private values auction model with information

release. Our techniques will allow us to handle one object as well as multi-object

auctions. We therefore introduce the broader setting straight away.

A risk-neutral seller auctions off a quantity of q identical objects in a (q+ 1)th price

auction. The n > q bidders are all risk-neutral. Those who submit the q highest

bids receive an object and each of them pays the (q + 1)th highest bid. Ties are

broken with uniform randomness.

Initially, bidders do not know their valuations exactly. Before the auction takes

place, the seller decides whether he wants to release information to the bidders. If

he opts against information release, the bidders stick to their initial private estimates

Yj of their valuations. The Yj are nonnegative and independently distributed ac-

cording to a commonly known cumulative distribution function G with finite mean.

If the seller opts for information release, each bidder receives an independent signal

that reveals more about his valuation for winning an object. We denote by Xj the

updated estimates of valuations. The random variables Xj are again nonnegative,

independent and identically distributed with finite mean and we denote their cu-

mulative distribution function by F . F−1 and G−1 denote the generalized inverse

(quantile) functions of F and G.

Throughout, we assume that all bidders follow their weakly dominant strategy of

bidding their best estimate of their valuation in the auction. Thus, bidder j bids

Xj if information is released and Yj otherwise. We denote by Xi:n the ith order
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statistic, i.e., the ith-largest out of X1, . . . , Xn, and define Yi:n analogously.11 Lemma

1 summarizes the main properties of the bidding equilibrium.

Lemma 1 Set Z = X if information is released and Z = Y if no information is

released. The expected selling price in the auction is given by E[Zq+1:n]. The seller’s

expected payoff is given by q E[Zq+1:n]. Bidders’ aggregate rents are given by

q∑
i=1

E[Zi:n − Zq+1:n]

and total welfare amounts to
q∑
i=1

E[Zi:n].

In the following, we call the seller a welfare maximizer if he is interested in maximiz-

ing total welfare, and we call him a revenue maximizer if he maximizes his expected

payoff.

Remark 1 An alternative interpretation of the model is that the seller decides

whether to release a signal implementing F or G. Related problems in which a deci-

sion maker decides which beliefs to induce have recently been studied intensively in

the literature on Bayesian persuasion starting with Kamenica and Gentzkow (2011).

In the context of information release with Bayesian updating, it is plausible to as-

sume that F and G share the same mean. Our analysis, however, does not rely

on this assumption. Specifically, it also incorporates the possibility of non-Bayesian

updating by the bidders. As a final interpretation, the seller could decide between

running the auction with bidders from two different populations with respective dis-

tributions F versus G.

Remark 2 We do not require that F and G are continuous. This enables us to

provide results for models of information release such as information partitions. The

additional structures introduced in Ganuza and Penalva (2010) in the one object case

– a prior distribution of valuations, a continuous family of signals with associated

costs of information provision, and a continuous family of (posterior) distributions of

valuations – directly translate to our setting. In particular, while we do not explicitly

specify costs of information release, the comparison between F and G should be

11In particular, we follow the usual notation in auction theory where X1:n denotes the largest
order statistic and not the usual statistics notation where it would denote the smallest.
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thought of as one side of a cost-benefit trade-off. While we focus on (q + 1)th price

auctions, the results can be transferred to more general mechanisms by the revenue

equivalence theorem for multi-unit auctions in Engelbrecht-Wiggans (1988) in the

case of continuous distributions.

2.2 Information Release and the Dispersive Order

This section illustrates how measures of dispersion allow to study the effects of

information release in auctions. We provide an overview of existing results and

point out their limitations by an example.

Intuitively, providing more information to bidders should increase the variability

in their estimated valuations. The posterior distribution F should thus be more

variable (or “dispersed”) than the prior G. In their analysis of information release,

Ganuza and Penalva (2010) study two notions of dispersion, an ordering between

F and G in the convex order, and an ordering of F and G in the dispersive order.

These are defined as follows.12

Definition 1

(i) F is more variable than G in the convex order, F �conv G,13 if E[X1] = E[Y1]

and

E[(X1 − t)+] ≥ E[(Y1 − t)+] for all t ∈ R

where (·)+ denotes the positive part.

(ii) F is more variable than G in the dispersive order, F �disp G, if

F−1(p)− F−1(q) ≥ G−1(p)−G−1(q) for all 0 < q < p < 1. (1)

An ordering in the convex order is a weak requirement closely related to second-order

stochastic dominance. It is equivalent to one distribution being a mean preserving

spread of the other. This is satisfied in many models of information release. Under

the assumption that F �conv G, Ganuza and Penalva show that releasing informa-

tion increases expected welfare and, with sufficiently many bidders, the expected

12For background on these two orders, see Chapters 3.A and 3.B of Shaked and Shanthikumar
(2007). Our definitions follow their Theorem 3.A.1 and Formula 3.B.1.

13For our purposes, it proves to be more convenient to formulate stochastic orders on the level
of distribution functions and not on the level of random variables as is done, e.g., in Shaked and
Shanthikumar (2007).
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revenue in the auction.14 Both results follow from the intuition that increasing the

variability of valuations tends to increase the highest valuations.

In order to control differences between overall welfare and seller’s revenues, stronger

orderings need to be imposed. Ganuza and Penalva rely on the dispersive order. F

dominates G in the dispersive order if all pairs of quantiles lie further apart under

F than under G. As we will see below, this is a rather rigid requirement which is

violated in many models of information release. The next lemma summarizes their

results on information release in auctions under the assumption that F �disp G.15

Lemma 2 Assume F �disp G and q = 1.

(i) Bidders’ aggregate rents increase when information is released,

E[X1:n −X2:n] ≥ E[Y1:n − Y2:n].

(ii) A welfare maximizing seller has a stronger incentive to release information than

a revenue maximizing seller,

E[X1:n − Y1:n] ≥ E[X2:n − Y2:n].

(iii) The expected welfare generated by the auction increases more strongly when the

number of bidders increases under information release than when no information is

released,

E[X1:n −X1:n−1] ≥ E[Y1:n − Y1:n−1].

(iv) The seller’s expected payoff increases more strongly when the number of bidders

increases under information release than when no information is released,

E[X2:n −X2:n−1] ≥ E[Y2:n − Y2:n−1].

All four results rely on comparisons of differences of order statistics, so-called spac-

ings. Technically, they stem from the following fact about the dispersive order.16

14These results are their Theorems 3 and 5. For a generalization to the q object case, see Roesler
(2015).

15The four parts of Lemma 2 correspond to Proposition 6, Theorem 7, Theorem 4 and Theorem
6 of Ganuza and Penalva (2010).

16The first claim of Lemma 3 follows from Theorem 3.B.31 of Shaked and Shanthikumar (2007).
The second claim follows from the first and formula (10) in the proof of Proposition 2.
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Lemma 3 Let F �disp G. Then for all i < n

E[Xi:n −Xi+1:n] ≥ E[Yi:n − Yi+1:n]

and

E[Xi:n −Xi:n−1] ≥ E[Yi:n − Yi:n−1].

In the remainder of this section, we illustrate a setting which does not fall under

Lemma 2 and which leads to the opposite economic implications. It demonstrates

that high order statistics can move closer together through information release even

though the posterior distribution is a mean-preserving spread of the prior and thus

more dispersed in convex order.

Example 1

Assume that bidders’ true valuations are distributed uniformly on [0, 1]. Bidders do

not know their true valuations. They only know whether their valuation is below 2/3

or not. By releasing information, the seller can furnish bidders with the additional

information whether their valuations lie below or above 1/3. Consequently, the a

priori distribution G puts a mass of 2/3 on the value 1/3 and the remaining mass

on 5/6.17 The a posteriori distribution F is a uniform distribution on 1/6, 1/2 and

5/6. Notice first that F and G are not comparable in the dispersive order. When

moving from G to F the lowest third of probability mass moves downwards from 1/3

to 1/6 while the middle third moves upwards from 1/3 to 1/2. The upper quantiles

do not react to the information release. Therefore, the lower two-thirds of probability

mass are indeed more dispersed under F than under G. Yet the upper two-thirds lie

more closely together.

When working with information partitions, information release will always lead to

such ambiguous effects and thus preclude a direct application of the dispersive or-

der. In Section 4.2 below, we discuss in more detail how this example relates to

information partitions in general.

As Lemma 2 is not applicable in our example, we compare welfare and seller’s rev-

17For a more detailed introduction of this model, see Section 4.2.
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enues by a direct calculation,

E[X1:n −X2:n] =
1

9
n

(
2

3

)n−1(
1 +

(
1

2

)n−2)
and E[Y1:n − Y2:n] =

1

6
n

(
2

3

)n−1
.

For n = 2, we obtain results similar to parts (i) and (ii) of Lemma 2. For n = 3,

welfare and seller’s revenues react equally strongly. With four or more bidders, the

results are reversed. Bidders’ aggregate rents decrease when information is released.

Thus a revenue maximizing seller has a stronger incentive to release information

than a welfare maximizing one.18

In our example, information affects bidders with intermediate valuations more strong-

ly than bidders with high valuations. This renders the auction more competitive. In

particular, information release does not increase the differences between high order

statistics. If we look at restrictions of F and G to sufficiently high quantiles, we see

that, in a sense, information release reduces dispersion.

Definition 2 For p ∈ (0, 1) define the restriction of F to its quantiles higher than

p as the cumulative distribution function

F>p(x) =


F (x)−p
1−p x ≥ F−1(p)

0 x < F−1(p)

and define G>p(x) analogously.19

Consider the distributions F>1/3 and G>1/3. F>1/3 is the uniform distribution on

{1/2, 5/6} while G>1/3 is the uniform distribution on {1/3, 5/6}. Unlike F and G

themselves, these restrictions can be compared in the dispersive order. Yet it is the

distribution without information release which is more dispersed, G> 1
3
�disp F> 1

3
.

Since higher quantiles dominate the behavior of high order statistics with sufficiently

many bidders, this observation explains the reversal of Lemma 2. Indeed, we will

see in Proposition 5 and Theorem 1 that a dispersive ordering between F and G

above some quantile is essentially a sufficient condition for whether Lemma 2 holds

or whether it is reversed.

18As we will see in greater generality in Section 4.2, parts (iii) and (iv) of the lemma are also
reversed with sufficiently many bidders.

19Notice that the definition is such that if F has an atom on F−1(p), i.e., F (F−1(p)) = s > p
then F>p(x) has an atom of size (s− p)/(1− p) on F−1(p).
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3 Dispersion Criteria for Order Statistics

As seen in Lemma 3, the dispersive order implies a control over all spacings of

order statistics while the outcomes of auctions depend only on the highest few. This

motivates the k-dispersion order, which is specifically designed to control spacings

of the k highest order statistics. This family of stochastic orders focuses on the

properties of a distribution that are crucial for an auction’s outcome, and avoids

imposing more restrictions than needed.

Even in situations in which a clear monotonicity behavior of high spacings does

not exist in general, it may emerge as soon as sufficiently many bidders take part

in an auction. This is demonstrated in Example 1, and motivates us to introduce

the family of k-m-dispersion order. These stochastic orders allow to control the k

highest order statistics in auctions with more than k+m bidders. We then provide

sufficient conditions for k- and k-m-dispersion that are easy to verify in applications.

Finally, we show the following completeness result: Any pair of finite distributions

is comparable in k-m-dispersion when the parameter m is chosen sufficiently large.

3.1 k-Dispersion

This section introduces the family of k-dispersion orders, compares them with other

stochastic orders, and develops their implications.

Definition 3 (k-Dispersion) For an integer k ≥ 1, F is more dispersed than G

in the k-dispersion order, F �k G, if∫ 1

p

(1− u)k dF−1(u) ≥
∫ 1

p

(1− u)k dG−1(u) (2)

for all p ∈ (0, 1).

While our proofs are based on (2), the following alternative formulations of this

condition may be easier to interpret. We can write (2) as20∫ ∞
F−1(p)

(1− F (x))kdx ≥
∫ ∞
G−1(p)

(1−G(x))kdx,

20These equivalences are implicit in the proof of Proposition 3.4 of Li and Shaked (2004), see also
Section 2 of Broniatowski and Decurninge (2015) for the relevant integral substitution formulas.
We only work with formulation (2) in the following and thus omit the calculations here.
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and as

E[(Xk:k − F−1(p))+] ≥ E[(Yk:k −G−1(p))+]. (3)

From (3), we see that F is more k-dispersed than G if upwards deviations of the

smallest out of k draws are greater in expectation under F than under G. Compared

to the definition of the convex order in (1), there are two differences. First, the

reference levels for deviations are the p-quantiles of the two distributions rather than

the same fixed reference level on both sides of the inequality. Intuitively, since order

statistics are connected to quantiles, this is the reason why k-dispersion allows us to

draw stronger conclusions about spacings of order statistics than the convex order.

The probability that Xk:n lies above the p-quantile is the same for all distributions.

Second, for k > 1, we directly impose a condition on Xk:k rather than on X1:1. The

parameter k thus gradually adjusts the strength of the dispersion criterion to the

level that is needed.

Throughout the paper, we mostly apply k-dispersion by relying on variations of the

following argument. Condition (2) implies that for any increasing function h∫ 1

0

h(u)(1− u)k dF−1(u) ≥
∫ 1

0

h(u)(1− u)k dG−1(u). (4)

For non-negative random variables, spacings of order statistics can be written as21

E[Xk:n −Xk+1:n] =

(
n

k

)∫ 1

0

un−k(1− u)kdF−1(u), (5)

where k < n. Thus, choosing h(u) = un−k in (4) shows that k-dispersion implies a

ranking of spacings.

We next derive the main properties and implications of k-dispersion. �k is a stochas-

tic (partial) order in that it is transitive:22 For three distribution functions F , G, and

H, F �k G and G �k H imply F �k H. While the 1-dispersion order coincides with

the excess wealth order,23 the k-dispersion orders for k > 1 appear to be novel.24

Like the excess wealth order, all k-dispersion orders are location independent, i.e.,

21For a derivation, see, e.g., Kadane (1971).
22This separates k-dispersion from some single-crossing criteria for dispersion such as the rotation

criterion of Johnson and Myatt (2006).
23See Shaked and Shanthikumar (2007) for background on the excess wealth order.
24The concept is, however, motivated by an observation of Li and Shaked (2004), see Proposition

2.
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F �k G remains fulfilled if either of the two distributions is shifted by a constant.

Proposition 1

(i) For all k ≥ 1, if F �disp G then F �k G.

(ii) For all k ≥ 1, if F �k+1 G then F �k G.

(iii) For all k ≥ 1, if E[X1] = E[Y1] and F �k G then F �conv G.

Thus, the dispersive order is stronger (and less broadly applicable) than all k-

dispersion orders.25 For instance, it is a necessary condition for the dispersive order

that F−1 and G−1 cross only once. k-dispersion does not rely on such a single-

crossing condition.

Within the family of k-dispersion orders, (k + 1)-dispersion implies k-dispersion.

The convex order can generally not be compared to k-dispersion and the dispersive

order as it is not location independent: F �conv G can only hold if F and G have

the same mean. Under the assumption that F and G share the same mean, the

convex order is implied by each of the other orderings. Yet the convex order itself

is not strong enough to control spacings of order statistics.

Proposition 2 demonstrates the suitability of k-dispersion for controlling spacings of

high order statistics. This result extends Proposition 3.4 of Li and Shaked (2004).

Proposition 2 If F �k G for some k < n then for all i ≤ k, we have

E[Xi:n −Xi+1:n] ≥ E[Yi:n − Yi+1:n],(i)

E[Xi:n −Xi:n−1] ≥ E[Yi:n − Yi:n−1].(ii)

The first claim shows that k-dispersion can control spacings of adjacent order statis-

tics as they occur, e.g., when computing the bidders’ revenues in an auction. The

second claim provides a similar control for spacings where the sample size n changes.

The claim thus enables us to study how welfare and revenue each react to changes

in the number of bidders.

25Therefore, k-dispersion should be easier to verify in empirical work than the dispersive order.
The dispersive order requires a positivity condition to hold for all pairs of quantiles, 0 < q < p < 1.
This is a two-dimensional problem. In contrast, the positivity condition for k-dispersion depends
only on one single parameter p ∈ (0, 1).
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Remark 3 k-dispersion is designed to be location independent to facilitate compar-

isons of differences. In order to obtain results comparing E[Xk:n] and E[Yk:n], the

two distributions need to be anchored in fixed locations. For instance, when F and

G share the same mean, comparison results of this type can be derived from the fact

that k-dispersion implies the convex order.

Remark 4 As Li and Shaked (2004) point out, (3) is equivalent to postulating that

the distributions of Xk:k and Yk:k are ordered in the excess wealth order �1. Conse-

quently, we obtain a method for constructing pairs of distributions that are ordered

in k-dispersion for any k: Suppose the pair of distributions F̃ and G̃ fulfills F̃ �1 G̃.

Then the distribution functions F and G defined through 1 − F = (1 − F̃ )1/k and

1−G = (1−G̃)1/k satisfy F �k G. To see this, notice that Fk:k = F̃ and Gk:k = G̃.26

Thus, any example in which the excess wealth order is applicable yields an example

in which k-dispersion applies.27

3.2 k-m-Dispersion

In Example 1, monotonicity of spacings sets in only with sufficiently many bidders.

While k-dispersion is weaker than the dispersive order, it cannot apply in such a

situation.Building on k-dispersion, we therefore introduce the weaker concept of k-

m-dispersion. This implies that Proposition 2 holds in richer settings if the number

of bidders is sufficiently large, namely n > k +m.

Definition 4 (k-m-Dispersion) For integers k ≥ 1 and m ≥ 0, F is more dis-

persed than G in the k-m-dispersion order, F �k,m G, if∫ 1

p

um(1− u)kdF−1(u) ≥
∫ 1

p

um(1− u)k dG−1(u) (6)

for all p ∈ (0, 1).

All k-m-dispersion orders are location-independent and transitive. k-0-dispersion

coincides with k-dispersion. In general, compared to k-dispersion, the increasing

26The distributions F and G generally do not have to share the same mean. Shifting the
distributions to the same mean leads to a situation in which F �conv G and F �k G are jointly
satisfied by Proposition 1.

27One such example is the mirror image of our Example 1. True valuations are uniformly
distributed on [0, 1]. A priori, bidders only know whether their valuations are above or below 1/3.
In addition, the seller can inform bidders whether their respective valuations are above or below
2/3. This example satisfies 1-dispersion (but not the dispersive order).
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function um in the integrand shifts attention into the right tail of the distribution.

With many bidders, the behavior at this tail is crucial for an auction’s outcomes.

Analogously to the alternative condition (3) for k-dispersion, we can write condition

(6) as

E[(Xk:k+m − F−1(p))+]− E[(Xk+1:k+m − F−1(p))+] (7)

≥ E[(Yk:k+m −G−1(p))+]− E[(Yk+1:k+m −G−1(p))+].

Thus, k-m-dispersion postulates that F is more dispersed than G in the following

sense. Exchanging the (k + 1)th-largest for the kth-largest out of k + m draws

increases deviations above a given quantile more strongly under F than under G.

This exchange of order statistics is one way of moving further into the right tail of

the distribution.28

Therefore, k-m-dispersion should hold when the right tail of F is more spread out

than the right tail of G. This is the case even if a global comparison of the dispersion

of the two distributions is not instructive, as in Example 1. Proposition 3 summarizes

the central properties of k-m-dispersion regarding spacings of order statistics. The

proposition generalizes Proposition 2.

Proposition 3 If F �k,m G for some k and m with k +m < n then for all i ≤ k

E[Xi:n −Xi+1:n] ≥ E[Yi:n − Yi+1:n],(i)

E[Xi:n −Xi:n−1] ≥ E[Yi:n − Yi:n−1].(ii)

To put the k-m-dispersion orders into context, we add the following result in the

spirit of Proposition 1.

Proposition 4

(i) For all k ≥ 1 and for all m ≥ 0, if F �k,m G then F �k,m+1 G.

(ii) For all k ≥ 1 and for all m ≥ 0, if F �k+1,m G then F �k,m G.

(iii) If k,m ≥ 1 and E[X1] = E[Y1] then F �k,m G 6⇒ F �conv G and F �conv G 6⇒
F �k,m G.

28As discussed in Remark 4, k-dispersion can be interpreted as an ordering of certain order
statistics in the excess wealth order. k-m-dispersion cannot be reduced to the excess wealth order
in such a way.
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Accordingly, increasing m renders the k-m-dispersion order less rigid. All k-m-

dispersion orders are weaker than the k-dispersion order and, consequently, the

dispersive order. Unlike k-dispersion, even if F and G share the same mean, k-m-

dispersion does not imply a convex ordering. The example in Section 4.2 illustrates

that both, F �k,m G and G �k,m F , can go together with F �conv G. If F stems

from a finer information partition than G, F �conv G always holds.

k-m-dispersion has a different purpose than the convex order. The convex order is

an information order. It indicates whether one distribution can be generated from

another through additional information release. In contrast, k-m-dispersion is an

order for assessing the effect of additional information on dispersion, e.g., in the right

tail.29 As illustrated in Example 1, an increase in the convex order can either increase

or decrease dispersion in the right tail. Unlike k-dispersion or the dispersive order,

k-m-dispersion is not limited to the case in which information increases dispersion.

This is only possible because k-m-dispersion does not imply a convex ordering.

For similar reasons, k-m-dispersion can handle models of heterogeneous signal qual-

ity in which the convex order does not apply. An example is the model of vary-

ing transmission probabilities in Section 4.3. Compared to the convex order, k-

m-dispersion can thus be understood as an alternative weakening of the dispersive

order. It focuses on the dispersion of higher realizations.

3.3 Sufficient Conditions for k-m-Dispersion

This section introduces explicit and easy-to-verify conditions that ensure that k-

m-dispersion holds. The first part of Proposition 5 shows that a strict dispersive

ordering in the right tail, F>p �disp G>p, implies k-m-dispersion for any sufficiently

large m. Part (ii) demonstrates how to compute an explicit threshold m̂(k) for the

sufficient level of m. In the auction setting, this translates into a minimum number

of bidders k + m̂(k).

F>p �disp G>p holds if and only if F>p �disp G>p is fulfilled while G>p �disp F>p is

violated. F>p �disp G>p is equivalent to F>p �disp G>p if and only if F>p is not a

horizontal shift of G>p.
30

29In Proposition 5 below, we show that k-m-dispersion is closely related to an ordering in the
dispersive order in the upper tail.

30For a formal proof, see Oja (1981), Theorem 4.1.
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Proposition 5 If there exists p ∈ (0, 1) such that F>p �disp G>p, then the following

holds.

(i) For every fixed k, there exists a finite constant m̂(k) such that F �k,m G holds

for all m > m̂(k).

(ii) Define Q ⊂ [0, 1]× [0, 1] as the set of all pairs (q1, q2) such that p < q1 < q2 < 1

and define

d+(q1, q2) =
(
F−1(q2)− F−1(q1)

)
−
(
G−1(q2)−G−1(q1)

)
, d− = G−1(p+)−G−1(0+).

Then (i) holds with m̂(k) given by

m̂(k) = inf
(q1,q2)∈Q

k · log
(

1
1−q2

)
+ log

(
d−

d+(q1,q2)

)
log(q1)− log(p)

< +∞. (8)

Part (ii) provides an explicit criterion for sufficient numbers of bidders. For this,

finding two suitable quantiles in the upper tail, q1 and q2, is crucial. Due to the

infimum, any pair (q1, q2) implies a threshold for m. For continuous distributions,

q1 =
√
p and q2 = q1+1

2
are robust choices leading to rather small thresholds as

demonstrated in Corollary 1.31

The idea behind the proof is to choose an interval (q1, q2) above the p-quantile, and to

argue that with sufficiently large sample size this interval contributes more to higher

order statistics than the region below the p-quantile. As the q1- and q2-quantiles lie

further apart under F than under G, it follows that spacings of high order statistics

are larger under F . To obtain tight thresholds, two aspects are key. First, we

need q1 > p and q2 < 1 so that all quantiles in the interval (q1, q2) contribute more

to high order statistics than all quantiles below the p-quantile.32 Second, we need

q1 < q2, and, in particular, that the constant d+(q1, q2) is sufficiently large. d+(q1, q2)

compares the distance between the respective q1- and q2-quantiles under F versus

G.

d+ is compared to d−. The latter quantifies how spread out G is below the p-quantile.

31For discrete distributions, where many quantiles are bunched in the same locations, the q1-
and q2-quantiles need to lie in different atoms of the more dispersed distribution F , see Example
1 below.

32In particular, q2 < 1 guarantees a uniform control over the contribution of the q1-q2-interval
as the very highest quantiles contribute little to intermediate order statistics.
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k 1 2 3 4 5 10 15 20

n̂(k) 4 7 10 13 16 31 46 61
n∗(k) 3 5 7 9 11 21 31 41

Table 1: Estimated thresholds n̂ and true minimal thresholds n∗ for n to ensure
E[Yk:n − Yk+1:n] > E[Xk:n −Xk+1:n] in Example 1 for different k.

d− is the difference between the lower ends of the supports of G and G>p.
33 If it

is small, k-m-dispersion will hold with a comparatively small threshold m. If d− is

substantially smaller that d+, m̂(k) is zero or negative. Then Proposition 5 implies

k-dispersion, i.e., F is more k-dispersed than G.

Example 1 Continued: Explicit Thresholds

In Example 1, we wish to conclude G �k,m F from G>1/3 �disp F>1/3. We thus need

to apply Proposition 5 with the roles of F and G exchanged. We choose p = 1/3,

q1 = 2/3 and q2 = 3/4 which gives F−1(q2) = G−1(q2) = 5/6, F−1(q1) = 1/2,

G−1(q1) = 1/3 and thus d+ = 1/6. F−1(0+) = 1/6 and F−1(p+) = 1/2 imply

d− = 1/3. It follows that G �k,m F , provided that

m ≥ m̂(k) = 2 · k + 1.

Table 1 compares the estimated thresholds n̂(k) = k + m̂(k) to the true thresholds

n∗(k).34 The inequality E[Yk:n − Yk+1:n] > E[Xk:n − Xk+1:n] holds if and only if

n > n∗(k). Proposition 5 proves the inequality for n > n̂(k). The true thresholds

n∗ all satisfy n∗(k) = 2 · k + 1. The estimated thresholds n̂(k) reflect this linear

growth behavior. We further see that n̂(k) has an estimated slope of 3 which is of a

reasonable magnitude.

Counting downwards from the upper bound n̂(k), one can determine the optimum

n∗(k) by direct calculation. Without an upper bound, finding n∗(k) would not

be possible. Counting upwards from k would be problematic as the ordering of

E[Yk:n − Yk+1:n] and E[Xk:n −Xk+1:n] might change arbitrarily often.

For discrete distributions, the condition F>p �disp G>p can be verified by comparing

33The values 0+ and p+ in the definition of d− are needed to properly define the lower ends of
the supports. For any distribution function F on R, F−1(0+) = inf{x|F (x) > 0} is the lower end of
the support (which is non-negative by our assumptions) while F−1(0) = inf{x|F (x) ≥ 0} = −∞.

34n∗ was computed numerically.
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the upper tails of the distributions. The final result of this section provides a similar

criterion for continuous distributions on bounded supports. F �k,m G holds for

sufficiently large m if the density of F is smaller than the density of G near the

upper ends of the respective supports. Applying Proposition 5, we derive an explicit

threshold on the required level of m.

Corollary 1 Suppose F and G are continuous with bounded supports [aF , bF ] and

[aG, bG] and possess continuous, positive density functions f and g. Suppose there

exist positive constants α, β, γ, δ such that α < f(x) < β < γ < g(y) for all x ∈
[bF−δ, bF ] and y ∈ [bG−δ, bG]. Then, F>p �disp G>p holds for p = 1−αδ. Moreover,

for any k, F �k,m G holds for all m with

m >
(k + 1) log

(
2

1−√p

)
+ log (bG − aG)− log

(
1
β
− 1

γ

)
1
2

log
(

1
p

) .

Let us have a closer look at the threshold level of m. The term depending on the

length of the support of G serves as an upper bound on the possible dispersion of G.

The threshold for m is larger if p is close to 1, i.e., if only in the highest quantiles,

F is more dispersed than G. p depends on α and δ, both of which measure the

weight in the upper tail. Finally, the term depending on the density bounds γ and

β provides a quantitative measure of the excess dispersion of F over G in the region

above the p-quantile. The threshold level of m is smaller, the larger the gap between

β and γ, i.e., the larger g − f is.

Thus it is the thickness of the density in the upper tail, not its location, that

ultimately dictates the behavior of spacings of high order statistics. In contrast, the

ordering of E[Xk:n] and E[Yk:n] for large n depends on the location of the upper tail,

i.e., on a comparison of the upper boundaries of the supports F−1(1) and G−1(1).

3.4 A Completeness Result

This section shows that any pair of finite distributions can be compared in k-m-

dispersion, i.e., there always exists a value of m such that k-m-dispersion is appli-

cable.35 In this sense, we obtain a complete ordering.

35We thus assume that the supports of F and G have finite cardinality. We conjecture that for
general distributions F and G counterexamples may be constructed by considering densities which
intersect infinitely often in the tail.
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We first show that for any pair of finite distributions that are not identical up to

horizontal shifts, there exists some p such that F>p and G>p are ordered strictly in

the dispersive order. Restricting attention to distributions that are not horizontal

shifts of each other is without loss of generality. If the distributions are horizontal

shifts, they are equivalent under �disp and �k,m.

Proposition 6 Suppose the distributions F and G are finite and they are not hor-

izontal shifts of each other. Then there exists a p ∈ (0, 1) such that F>p �disp G>p

or G>p �disp F>p.

Now define the stochastic order �disp∗ as follows. F �disp∗ G holds whenever there

exists a p ∈ (0, 1) such that F>p �disp G>p. Proposition 6 implies that �disp∗ is a

complete order on finite distributions. The next corollary shows that this complete-

ness is inherited by the orders �k,∗ defined analogously. F �k,∗ G holds whenever

there exists an m such that F �k,m G.

Corollary 2 For any two finite distributions F and G that are not horizontal shifts

of each other, the following three claims are equivalent.

(i) There exists p such that F>p �disp G>p.

(ii) For all k, there exists an m such that F �k,m G.

(iii) There exist k and m such that F �k,m G.

Letting m converge to infinity leads to the complete order �k,∗, which is a com-

pletion of the dispersive order. As m increases, more pairs of distributions become

comparable in k-m-dispersion. This will help us to derive results about auctions

with at least k +m bidders in Section 4.

The proof of Proposition 6 is constructive, i.e., it implies an explicit algorithm

for deciding which of the two distributions F versus G is more dispersed in k-m

dispersion for sufficiently large m. We present two results in this vein in the context

of information partitions in Section 4.2.

4 Information Release in Multi-Object Auctions

4.1 The General Case

This section applies k- and k-m-dispersion to information release in auctions in

which q identical objects are for sale. Each bidder is in need of one of these objects,
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as e.g. in contests for promotions or admission to a university.

Theorem 1 generalizes Lemma 2. It provides conditions for welfare reacting more

strongly to information than seller’s revenues, as well as conditions for the opposite

situation. Furthermore, it covers the cases in which sufficiently many bidders need

to take part in order to arrive at clear-cut results.

Theorem 1

(i) If F �q,m G and n > q+m, then bidders’ aggregate rents increase when informa-

tion is released.

(ii) If F �q,m G and n > q + m, then a welfare maximizing seller has a stronger

incentive to release information than a revenue maximizing seller.

(iii) If F �q,m G and n > q +m, then the welfare generated by the auction increases

more strongly when the number of bidders increases under information release than

when no information is released.

(iv) If F �q+1,m G and n > q + 1 + m, then the expected selling price and the

seller’s payoff increase more strongly when the number of bidders increases under

information release than when no information is released.

(v) The conclusions of (i-iii) are reversed if G �q,m F and n > q+m. The conclusion

of (iv) is reversed if G �q+1,m F and n > q + 1 +m.

Thus, in the setting q = 1 and m = 0 of Ganuza and Penalva (2010), the excess

wealth order is sufficient for (i) to (iii).36 Stronger orders with k = 2 are needed

for (iv), i.e., for understanding the interplay of information release and number of

bidders with regard to revenue. We also need stronger dispersion criteria when the

number of objects, q, increases. Finally, part (v) of the result takes into account that

the effects of information release may run in both directions and provides criteria for

both cases. An immediate consequence of (ii) is that if information release is costly

then for intermediate cost levels a welfare maximizer releases information while a

revenue maximizer does not.

Remark 5 In our baseline model, F is the posterior and G is the prior distribution

under Bayesian updating. In this case, a ranking in the convex order, F �conv G,

is satisfied. Cases (i) to (iv) of the theorem cover settings in which this ranking is

in line with the one in k-m-dispersion. This is specifically the case if the dispersive

36Compare Li (2005) for similar results relying on the excess wealth order.
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order applies. In contrast, case (v) covers situations in which the rankings in convex

order and k-m-dispersion run in opposite directions. This is, e.g., the case in Ex-

ample 1. Our arguments rely solely on comparisons of F and G in k-m-dispersion.

A ranking in convex order is not relevant. Therefore, the theorem also applies if F

and G are two posteriors which stem from the same prior in response to different

signals A and B. In this case, part (i) of the theorem compares which of the two

signals leads to the stronger increase in bidders’ aggregate rents. The other parts of

the theorem have similar interpretations.

4.2 Information Partitions

When information release takes the form of increasingly finer information partitions,

Theorem 1 yields a complete characterization of information release with sufficiently

many bidders. If information release increases the highest valuation estimate, the

requirements of claims (i) to (iv) of the theorem are fulfilled. If the highest valuation

estimate is unaffected by information release, the four claims are reversed.

Assume that bidders’ true valuations are distributed according to a continuous dis-

tribution function H with a strictly positive density h on an interval [a, b] with a ≥ 0

and a < b ≤ ∞. Denote by (βi)i an strictly increasing subsequence of (a, b) with

B > 0 elements. Thus, β1 and βB are the lowest and highest values in the sequence.

Without information release, bidders only know for each of the values βi whether

their valuations lie above or below. Accordingly, the distribution G of valuation

estimates assigns probability

H(βi)−H(βi−1) to the estimate

∫ βi
βi−1

xh(x)dx

H(βi)−H(βi−1)
(9)

with the obvious modifications for β1 and βB.

Information release is modeled such that the seller increases the number of values for

which bidders know whether their valuation lies above or below. The sequence (βi)i

is thus replaced by another strictly increasing sequence (αi)i with A > B elements.

(βi)i is a subsequence of (αi)i. The distribution F of posterior valuation estimates

is derived from (αi)i analogously to (9).

Proposition 7 shows that for any k, F and G are always comparable in the k-m-

dispersion order for sufficiently large m.
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Proposition 7

(i) If αA = βB, then for any k there exists an m such that G �k,m F .

(ii) If αA > βB, then for any k there exists an m such that F �k,m G.

Whether F or G is more dispersed thus depends on whether information release

affects the highest valuation estimates or not. If αA = βB, the bidders with the

highest valuation estimates are not affected by information release. The auction thus

becomes more competitive such that the reverses of claims (i-iv) of Theorem 1 hold

with sufficiently many bidders. If αA > βB, information release further differentiates

the valuation estimates of the highest valuation bidders. Consequently, the auction

becomes less competitive and the four claims of Theorem 1 hold with sufficiently

many bidders.

Let us now turn to the more general case in which F and G result from two different

information partitions. We thus drop the assumption that F is a refinement of G.

We know from Section 3.4 that any pair of (finite) partitions is comparable in k-

m-dispersion for sufficiently large m. The following corollary shows that when one

partition differentiates more strongly at the very top, the resulting distribution is

the more dispersed one.

Corollary 3 Let (αi)i and (βi)i be any pair of strictly increasing subsequences of

(a, b) and denote by F and G the corresponding distributions of valuation estimates.

(i) If αA > βB, then for any k there exists an m such that F �k,m G.

(ii) If αA < βB, then for any k there exists an m such that G �k,m F .

For example, suppose H is the uniform distribution on [0, 1] and F and G are

generated from the partitions α = (1/3, 2/3) and β = (1/2). In this case, F is

more differentiated at the top than G, and thus F �k,m G for sufficiently large m.

Note that F and G are not comparable in the convex order or in k-dispersion with

m = 0.37

37The result about the convex order can be seen as follows. When a bidder knows that his
valuation is below (or above) 1/2, there is no additional piece of information that leads him to
believe that it can lie anywhere between 1/3 and 2/3. This is a general feature of “overlapping”
information partitions. The result about k-dispersion follows since k-dispersion would imply the
convex order.
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4.3 Heterogeneous Signal Quality

The quality of a signal may depend on the bidder’s type. In this section, we provide

a model that allows us to study such a heterogeneity in signal quality in a multi-

object auction context. We start with the following classical set-up. Bidders receive

a noisy signal which is identical to their valuation with some probability and pure

noise otherwise. With homogeneous signal quality, this is the truth-or-noise model

introduced in Lewis and Sappington (1994) as applied, e.g., by Johnson and Myatt

(2006), Ganuza and Penalva (2010), and Shi (2012). We study a variation of this

model which captures heterogeneity in signal quality. The probability that the signal

is correct differs for bidders with high versus low valuations. Possible interpretations

include information which is more vital to bidders with low valuations than to

bidders with high ones (or vice versa), or, more generally, information which is

more precise in some respects than in others. We relegate the analysis of this model

to the supplementary online material.

5 Further Applications

This section sketches extensions of our analysis to other economic contexts, like

matching markets, and the control of differences in low realizations which is impor-

tant for risk management and reliability theory. We show that k-dispersion can also

be applied to spacings of order statistics which are not adjacent.

Proposition 8 If F �k G for some k < n then for all i ≤ k and all l > i

E[Xi:n −Xl:n] ≥ E[Yi:n − Yl:n]

and
l∑
j=i

jE[Xj:n −Xj+1:n] ≥
l∑
j=i

jE[Yj:n − Yj+1:n].

The first claim generalizes the main result of Kochar et al. (2007) to k > 1. The

case k = 1 of the second claim generalizes a result of Barlow and Proschan (1966)38

which is a key ingredient of Hoppe et al. (2009)’s analysis of signaling costs and

38Barlow and Proschan (1966) rely on the convex transform order which is more restrictive than
the excess wealth order when F and G share the same mean: Shaked and Shanthikumar (2007),
formula (4.B.3), shows that the convex transform order implies the star order. Li (2005), Remark
2.7, shows that the star order implies the excess wealth order if F and G share the same mean.
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welfare in matching markets. The proposition thus shows that the results of Hoppe

et al. hold under weaker requirements on the distributions.

Regarding the spacings of the k lowest order statistics, we define the family of k-m-

dispersion orders as

F � k,m G ⇔
∫ p

0

uk(1− u)mdF−1(u) ≥
∫ p

0

uk(1− u)m dG−1(u) ∀p ∈ (0, 1).

For example, expected differences in quality for the worst, second to worst, third

to worst, etc. product out of a production series can be compared through these

orders. All arguments for this family of orders are parallel to those we obtained for

the k-m- dispersion orders. Like the 1-0-dispersion order, the 1-0-dispersion order

coincides with a familiar stochastic order, namely, with the location independent

risk order of Jewitt (1989).

6 Conclusion

This paper has introduced new techniques for analyzing the impact of information

release on revenues and welfare in independent private values auctions. From here,

there are several avenues for further research. As sketched in the previous section,

the results may inform various economic contexts such as matching markets or the

study of economic inequality in which order statistics need to be handled. As the

statistics and reliability theory literature inspired some of our techniques, our results

may also prove useful in this domain. Finally, one can think of various challeng-

ing extensions to more general auction models. A generalization from independent

private values to models with correlated valuations comes to mind. Further, one

may want to think about models in which the auctioneer can send different sig-

nals to different bidders. This last point is particularly interesting since Bergemann

and Pesendorfer (2007) have shown that – unless institutional requirements enforce

symmetry – revenue-optimal information release consists of asymmetric information

partitions.

A Proofs

Proof of Proposition 1

To see (i), notice that F �disp G implies that the measure ν given by dν(u) =
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d(F−1(u) − G−1(u)) is non-negative, so that integrals of non-negative functions

against ν are non-negative. Thus (2) holds for all p. (ii) is shown as follows: Lemma

7.1 of Chapter 4 of Barlow and Proschan (1981) states that for any signed measure

ν on R+ and any non-decreasing, non-negative function h∫ ∞
p

dν(u) ≥ 0 ∀p > 0⇒
∫ ∞
0

h(u)dν(u) ≥ 0.

Applying this result with dν(u) = (1−u)k+1d(F−1(u)−G−1(u)) shows that F �k+1 G

implies ∫ 1

0

h(u)(1− u)k+1dF−1(u) ≥
∫ 1

0

h(u)(1− u)k+1 dG−1(u)

for any non-decreasing, non-negative h. Applying this inequality to all members of

the family of non-decreasing functions (hq)q∈(0,1) defined by hq(u) = (1− u)−11{u≥q}

yields ∫ 1

q

(1− u)kdF−1(u) ≥
∫ 1

q

(1− u)k dG−1(u) ∀q ∈ (0, 1)

and thus F �k G. (iii) follows from the fact that F �k G implies F �1 G by (ii),

and from the fact that �1 is the excess wealth order so that we can apply Formula

3.C.8 of Shaked and Shanthikumar (2007). �

Proof of Proposition 2

By Assertion (ii) of Proposition 1, it is sufficient to consider the case k = i of both

claims. By (5), claim (i) follows from∫ 1

0

un−k(1− u)kdF−1(u) ≥
∫ 1

0

un−k(1− u)kdG−1(u).

This inequality follows from the definition (2) of the k-dispersion order by applying –

like in the proof of Proposition 1 – Lemma 7.1 of Chapter 4 of Barlow and Proschan

(1981) to the signed measure ν given by dν(u) = (1 − u)kd(F−1(u) − G−1(u)) and

to the non-decreasing function h(u) = un−k. Claim (ii) is deduced from claim (i) as

follows: Rewriting Relation 1 from David (1970, p. 45) into our notation yields

E[Xk:n]− E[Xk:n−1] =
k

n
(E[Xk:n]− E[Xk+1:n]). (10)
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Thus we can apply (i) and conclude that F �k G implies

E[Xk:n]− E[Xk:n−1] =
k

n
(E[Xk:n]− E[Xk+1:n])

≥ k

n
(E[Yk:n]− E[Yk+1:n]) = E[Yk:n]− E[Yk:n−1].

�

Proof39 of Proposition 3

By Proposition 4 (ii) we can focus on the case i = k. The proof of (i) is entirely par-

allel to the one of Proposition 2 except that we choose dν(u) = um(1−u)kd(F−1(u)−
G−1(u)) and h(u) = un−k−m. (ii) follows from (i) and (10). �

Proof of Proposition 4

The proof of (i) is entirely parallel to the one of Proposition 1 (ii) except that we

choose dν(u) = um(1− u)k+1d(F−1(u)−G−1(u)). The same is true for the proof of

(ii) where we choose dν(u) = um(1 − u)kd(F−1(u) − G−1(u)) and hq(u) = u1{u≥q}.

For (iii), notice that Proposition 7 provides a class of examples where E[X1] = E[Y1],

F �conv G is satisfied together with either F �k,m G or G �k,m F for some m. �

Proof of Proposition 5

The first claim of the proposition follows immediately from the second. Moreover,

the assumption of a strict dispersive ordering above the p-quantile implies existence

of a pair (q1, q2) ∈ Q for which d+(q1, q2) > 0. Denote by m̂(k, q1, q2) the expres-

sion within the infimum. We have m̂(k, q1, q2) = +∞ for any (q1, q2) ∈ Q with

d+(q1, q2) = 0 while m̂(k, q1, q2) is finite if d+(q1, q2) > 0. To complete the proof, it

thus suffices to show the following for any fixed (q1, q2) ∈ Q with d+ = d+(q1, q2) > 0:

m > m̂(k, q1, q2) implies F �k,m G.

Choose the measure ν as dν(u) = (1 − u)kd(F−1(u) − G−1(u)). We have to show

that there exists m such that

L(r) =

∫ 1

r

umdν(u)

is non-negative for all r ∈ (0, 1). By assumption, the measure ν is nonnegative over

39The logical contingencies between Propositions 3 - 7 are as follows: Proposition 5 ⇒ Proposi-
tion 7 ⇒ Proposition 4 ⇒ Proposition 3.
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(p, 1]. This proves the claim for r > p. For r ≤ p consider the decomposition40

L(r) =

∫ p+

r

umdν(u) +

∫ q1

p+
umdν(u) +

∫ q2

q1

umdν(u) +

∫ 1

q2

umdν(u).

The second and fourth integrals are non-negative by assumption. Since F−1 and

G−1 are non-decreasing, we obtain the lower bound

L(r) ≥ −
∫ p+

0+
um(1− u)kdG−1(u) +

∫ q2

q1

umdν(u).

Since both integrals are with respect to a nonnegative measure, we can further bound

them by

L(r) ≥ −pm
∫ p+

0+
dG−1(u) + qm1 (1− q2)k

∫ q2

q1

d(F−1(u)−G−1(u)).

The right hand side equals −pmd− + qm1 (1− q2)kd+ which is non-negative for suffi-

ciently large m since (1− q2)kd+ > 0 and q1 > p. To conclude the proof, it suffices

to solve −pmd− + qm1 (1− q2)kd+ ≥ 0 for m. �

Proof of Corollary 1

Without loss of generality, we assume throughout that b = bF = bG. We first identify

a range of quantiles where our density bounds can be applied. We know that

F (b− δ) = 1−
∫ b

b−δ
f(t)dt < 1− αδ

and thus F−1(1−αδ) > b− δ, and similarly, G−1(1− γδ) > b− δ. By monotonicity

of F−1 and G−1 and by α < γ, it follows that for all q ≥ p := 1 − αδ, we have

F−1(q) > b− δ and G−1(q) > b− δ. Notice that F (b− δ) < p guarantees p ∈ (0, 1).

Thus, for any p ≤ q1 < q2 ≤ 1, we obtain the bound

q2 − q1 =

∫ F−1(q2)

F−1(q1)

f(x)dx < β(F−1(q2)− F−1(q1))

40To make the choice of p+ in the integral boundaries rigorous, one can read the integrals as
integrals with respect to the Borel-measure induced by F−1−G−1, see Remark 2.2 in Broniatowski
and Decurninge (2015).
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and similarly q2 − q1 > γ(G−1(q2)−G−1(q1)). Consequently,

d+(q1, q2) = (F−1(q2)−F−1(q1))− (G−1(q2)−G−1(q1)) >
(

1

β
− 1

γ

)
(q2− q1), (11)

proving that with our choice of p, it holds that F>p �disp G>p. It remains to deduce

a ranking in k-m-dispersion from Proposition 5. (11) provides a lower bound on

d+(q1, q2). For d− we simply use the upper bound d− ≤ bG − aG. It remains to

choose concrete values for q1 and q2. To simplify the dependence on p, we set

q1 =
√
p > p and q2 = 1

2
(1 + q1). With these choices, Proposition 5 implies that for

any k, F �k,m G holds for

m >
(k + 1) log

(
2

1−q1

)
+ log (bG − aG)− log

(
1
β
− 1

γ

)
1
2

log
(

1
p

) ,

where we used that 1− q2 = q2 − q1 = 1
2
(1− q1). �

Proof of Proposition 6

Suppose that F takes values x1 > . . . > xnF
with positive probabilities p1, . . . , pnF

while G takes values y1 > . . . > ynG
with positive probabilities q1, . . . , qnG

. Since

the dispersive order is invariant under horizontal shifts, we can assume without loss

of generality that x1 = y1, i.e., both distributions are shifted so that they have the

same largest realization. Let m ≥ 1 be the smallest integer such that xm 6= ym or

pm 6= qm.

Consider first the case where xm 6= ym. Since x1 = y1, this implies m > 1. Define

p = 1− (p1 + . . .+ pm−1 + min(pm, qm)) .

Then the distributions F>p and G>p have atoms of identical sizes on the same

values except that the location of the smallest atom differs. When xm < ym, we

have F>p �disp G>p, and when xm > ym, we have G>p �disp F>p. Consider next the

case where xm = ym but pm > qm. This implies m < nG. Define

p = 1− (p1 + . . .+ pm) .

Then we have G>p �disp F>p since the distributions F>p and G>p are identical except

that F>p has an atom of size pm in xm = ym. Under G>p, this probability mass of
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pm is split into an atom of size qm at ym while the remaining mass of pm − qm is

located at ym+1 and (possibly) below. The case where xm = ym but pm < qm is

analogous. �

Proof of Corollary 2

The implication (i) ⇒ (ii) ⇒ (iii) follows from Proposition 5. It remains to show

(iii) ⇒ (i). Suppose that there exists k and m such that F �k,m G. This implies

F �k,l G for any l > m. For finite distributions which are not horizontal shifts of

each other, F �k,m G and G �k,m F cannot hold simultaneously. Thus, G �k,l F is

violated by assumption for all l ≥ m. G>p �disp F>p would imply G �k,L F for all

L > M for some M . This is a contradiction. Therefore, Proposition 6 implies that

there exists p such that F>p �disp G>p. �

Proof of Theorem 1

Observe that we can write bidders’ aggregate rents after information release as

q∑
i=1

E[Xi:n −Xq+1:n] =

q∑
i=1

iE[Xi:n −Xi+1:n].

To the expression on the right hand side we can apply Proposition 3 and conclude

q∑
i=1

E[Xi:n −Xq+1:n] ≥
q∑
i=1

E[Yi:n − Yq+1:n]

which is (i). Rearranging this inequality yields

q∑
i=1

E[Xi:n − Yi:n] ≥ E[qXq+1:n − qYq+1:n]

which proves (ii). The welfare gains from adding an additional bidder when releasing

information are given by
∑q

i=1E[Xi:n−Xi:n−1]. This is greater than the correspond-

ing quantity with Y in place of X by Proposition 3. This shows (iii). The claim

about the expected selling price in (iv) follows from observing that Proposition 3

yields

E[Xq+1:n −Xq+1:n−1] ≥ E[Yq+1:n − Yq+1:n−1]

provided that F �q+1,m G. The statement about the seller’s payoff follows by

multiplying this inequality with q. (v) follows by exchanging the roles of F and G.�

Proof of Proposition 7
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Denote by α∗ the largest element of (αi)i which is not included in (βi)i and set p =

H(α∗). We prove (i) by showing that G>p �disp F>p and then invoking Proposition

5 (i). Denote by β∗+ > β∗− the upper and lower neighbors of α∗ in the sequence

(βi)i. Observe that the distributions F>p and G>p are both discrete distributions

concentrated on a finite number of values. In particular, since the two partitions are

identical from β∗+ ∈ (αi)i on, the two distributions are identical except for the lowest

value. For F>p, the lowest possible realization lF is the conditional mean of H over

the set [α∗, β∗+], while for G>p this lowest realization is the conditional mean lG over

[β∗−, β
∗
+]. Both occur with the same positive probability (H(β∗+) −H(α∗))/(1 − p).

Clearly, we have lF > lG. Since this difference between the lowest realizations is the

only difference of F>p and G>p, it follows directly that G>p �disp F>p.

The proof of (ii) proceeds similarly by showing that F>p �disp G>p. We set p =

H(βB). Then G>p is a degenerate distribution which takes as its only value the

conditional mean of H over [βB, b]. F>p takes at least two values with positive

probability, since the sequence (αi) contains at least one element which is greater

than βB. We thus have F>p �disp G>p. �

Proof of Corollary 3

It suffices to note that the proof of Proposition 7 (ii) still goes through in this more

general setting, switching the roles of F and G when βB > αA. �

Proof of Proposition 8

By Assertion (ii) of Proposition 1, it is sufficient to consider the case k = i of both

claims. From (5) we obtain that

E[Xk:n −Xl:n] =

∫ 1

0

l−1∑
j=k

(
n

j

)
un−j(1− u)jdF−1(u)

and
l∑

j=k

jE[Xj:n −Xj+1:n] =

∫ 1

0

l−1∑
j=k

j

(
n

j

)
un−j(1− u)jdF−1(u).

Obviously, the right hand sides coincide up to the factor j in the second sum. In

the following, we denote this factor by ϕ(j) and consider the choices ϕ(j) = 1 and

ϕ(j) = j. Now we claim the following:

Claim: For both, ϕ(j) = 1 and ϕ(j) = j, there exists a non-decreasing function h
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such that we can write

l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)j = h(u)(1− u)k.

Provided that this claim is true, the desired inequality follows from the definition (2)

of the k-dispersion order by applying – like in the proof of Proposition 1 – Lemma

7.1 of Chapter 4 of Barlow and Proschan (1981) to the signed measure ν given by

dν(u) = (1−u)kd(F−1(u)−G−1(u)) and to the non-decreasing function h identified

in the claim: We obtain ∫ 1

0

h(u)dν(u) ≥ 0.

and thus∫ 1

0

l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)jdF−1(u) ≥

∫ 1

0

l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)jdG−1(u).

Thus it remains to prove the claim. Since we can write

l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)j = (1− u)k

l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)j−k,

this amounts to proving that

h(u) =
l−1∑
j=k

ϕ(j)

(
n

j

)
un−j(1− u)j−k

is increasing in u for our two choices of ϕ(j). The key idea is to rewrite h in terms

of a Binomial(n− k, 1− u) distribution. We can write

h(u) =
l−k−1∑
j=0

ϕ(k + j)

(
n

k + j

)
un−k−j(1− u)j =

n−k∑
j=0

Ψ(j)

(
n− k
j

)
un−k−j(1− u)j

where

Ψ(j) = ϕ(k + j)

(
n
k+j

)(
n−k
j

)1{j<l−k} = ϕ(k + j)
n · . . . · (n− k + 1)

(j + k) · . . . · (j + 1)
1{j<l−k}.

For our two choices of ϕ which yield, respectively ϕ(k+ j) = 1 and ϕ(k+ j) = j+k,
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Ψ(j) is clearly a non-negative, non-increasing function. Now denote by Zn−k,1−u a

random variable distributed according to the Binomial(n − k, 1 − u) distribution.

From writing h as

h(u) = E[Ψ(Zn−k,1−u)]

we can see that h is non-decreasing in u since Ψ is non-increasing. �
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B Supplementary Online Material

We extend the truth-or-noise model of Lewis and Sappington (1994) by allowing

for heterogeneity in signal quality. Bidders’ true valuations Zi are independent and

uniformly distributed on [0, 1]. Each agent receives an independent signal Si which

is either equal to Zi or equal to Ui. Ui is independent of Zi and also uniformly

distributed on [0, 1]. There are numbers θ, pL, pH ∈ (0, 1) such that the probability

of Si = Zi is pL for Zi ≤ θ and pH for Zi > θ. Signal quality thus depends on

whether the true valuation is above or below θ. We denote by G the distribution of

valuation estimates that follows from this specification of θ, pL and pH .

In this model, releasing more information corresponds to improvements in the trans-

mission quality of the signals. It can thus take three basic forms, an increase in pH ,

an increase in pL or a shift of θ such that more agents have the higher signal quality.

In the following, we refer to these three possibilities as an H-increase in information,

an L-increase in information, and a T -increase in information.41 We denote by F

the distribution of valuation estimates which arises from either of these increases in

the amount, or quality, of information. In particular, we say that F differs from G,

e.g., through an H-increase in information if the two distributions are based on the

same values of pL and θ but if F has a higher value of pH than G.

In order to study the impact of information release, we need to establish what the

distributions G and F look like. The probability qL of observing a signal below θ is

given by

qL = P (Si ≤ θ) = θpL + θ2(1− pL) + θ(1− θ)(1− pH) =: p1 + p2 + p3,

where the three summands pj correspond to the cases where Si = Zi ≤ θ, where

Si, Zi ≤ θ but Si 6= Zi, and where Si ≤ θ but Zi > θ. Analogously, we have

qH = P (Si > θ) = (1− θ)pH + (1− θ)2(1− pH) + θ(1− θ)(1− pL) =: p4 + p5 + p6.

The valuation estimate (and bid) of a bidder who received the signal realization

41For the case of a T -increase, more information is released if pH > pL and θ decreases, or if
pH < pL and θ increases. When pH = pL, changes in θ have no effect. We thus implicitly assume
pL 6= pH when speaking of a T -increase in information.
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s ≤ θ is thus given by

eL(s) =
1

qL

(
s p1 +

θ

2
p2 +

1 + θ

2
p3

)
where the pre-factors of p2 and p3 are the means of uniform distributions on [0, θ]

and (θ, 1]. Similarly, an agent who received s > θ has the estimate

eH(s) =
1

qH

(
s p4 +

1 + θ

2
p5 +

θ

2
p6

)
.

Denote by U(· | I ) the density of a uniform distribution on the interval I. Since

signals remain uniformly distributed conditional on lying above or below θ, the

distribution of valuation estimates G is a mixture of two uniform distributions and

its density g is given by g(y) = qL U(y | IL ) + qH U(y | IH ) where

IL = [eL(0), eL(θ)] and IH = (eH(θ), eH(1)].

In this model, an increase in the amount of information does not necessarily imply

a higher dispersion in the sense of the dispersive order.42 Moreover, higher values

of the signal realization do not necessarily imply higher valuation estimates. Such

a lack of monotonicity can occur if θ is sufficiently large so that Zi < θ can still

correspond to a rather high valuation, and if signal realizations below θ are more

reliable than those above, pL � pH . For the auction, we need to determine whether

the overall highest bids come from bidders with the highest possible signals (near

1), or from bidders with signals near θ. This motivates the following definition of

monotonicity at the top (MT).

Definition 5 The tuple (pL, pH , θ) satisfies monotonicity at the top (MT) if eH(1) >

eL(θ). The tuple (pL, pH , θ) violates (MT) if eH(1) < eL(θ).

The next lemma provides an explicit equivalent condition and some illustrations of

(MT). (MT) holds if high signals are more reliable than low ones, or if the overall

reliability of signals is sufficiently high while the threshold θ is low. (MT) is violated

if high signals are sufficiently unreliable, and if the threshold θ is sufficiently high.

42For instance, for pL = θ = 0.25 and pH = 0.1, there is a gap between the two parts of the
support IL and IH . Improving signal quality by increasing pH to 0.25 closes this gap, eL(θ) =
eH(θ), so that some quantiles lie more closely together than before, thus ruling out an ordering in
the dispersive order.
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Lemma 4

(i) (MT) is equivalent to

0 < S(pL, pH , θ) = pL + pH + pLpH + θ2p2L − (1− θ)2p2H − 2θpL − 2θpLpH .

(ii) (MT) is satisfied if pH ≥ pL.

(iii) (MT) is satisfied if (1− θ)(pL + pH) ≥ 1.

(iv) For any pL ∈ (0, 1), (MT) is violated if pH is sufficiently small and θ is suffi-

ciently large.

The next two propositions characterize the effects of the three types of information

release, first for the case where (MT) holds and then for the case where it is violated.

We indicate whether F �k,m G or vice versa for sufficiently high m. The results on

auctions then follow directly from Theorem 1.

Proposition 9 Suppose (pL, pH , θ) satisfy (MT).

(i) If F differs from G through a sufficiently small L-increase or T -increase in infor-

mation, then for any k there exists m such that F �k,m G.

(ii) If F differs from G through a sufficiently small H-increase in information and if

pH < θ−1 − pL, then for any k there exists m such that F �k,m G.

(iii) If F differs from G through a sufficiently small H-increase in information and

if pH > θ−1 − pL, then for any k there exists m such that G �k,m F .

In the proposition, “a sufficiently small increase” means that the increase leaves

condition (MT) intact and, in cases (ii) and (iii), also the additional restriction on

pH . Increasing the amount of information through changes in pL or θ thus relaxes

competition among sufficiently many bidders, i.e., assertions (i)-(iv) of Theorem 1

apply. In contrast, if θ, pL and pH are sufficiently high,43 a further increase in pH

induces a fiercer competition at the top and implies the reversals of assertions (i)-

(iv). In the latter case a further increase in pH leads to more bidders learning about

their very high valuations. If the overall signal quality is already high, this effect

dominates the welfare enhancing effects of information release such as a further

43Notice that pH > θ−1 − pL can only hold if the right hand side is smaller than 1, i.e., if
(1 + pL)θ > 1. To see that cases (ii) and (iii) of the proposition are both compatible with (MT),
consider p = pL = pH > 1

2 . Then (MT) holds by Lemma 4 and whether we are in case (ii) or (iii)
depends on whether θ < (2p)−1 ∈ (0, 1) or not.
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differentiation of beliefs at the top.44 Finally, we investigate the situation where

(MT) is violated so that the highest bids come from bidders with signals slightly

below θ.

Proposition 10 Suppose (pL, pH , θ) violate (MT). If F differs from G through a

sufficiently small H-increase, L-increase or T -increase in information, then for any

k there exists m such that F �k,m G.

Thus, if (MT) is violated and there are sufficiently many bidders, assertions (i)-(iv)

of Theorem 1 hold for all three types of information release. Small amounts of

information always soften competition at the top.

Our analysis describes which kind of information release appeals more to welfare-

maximizing versus revenue-maximizing sellers. Another question is whether infor-

mation release actually enhances welfare and the seller’s revenue or not. In the

information partitions model of Section 4.2, welfare and seller’s revenue always in-

crease in response to information release when there are sufficiently many bidders.

In the model of this section, effects can be more intricate. With sufficiently many

bidders, the question is equivalent to the question whether the upper end of the

support u = max(eL(θ), eH(1)) increases in response to information release. When

(MT) is satisfied, H- and L-increases in information always lead to an increase in

u = eH(1) and thus to higher welfare and seller’s revenue with sufficiently many

bidders.45

Proofs for the Supporting Online Material

Proof of Lemma 4

A direct calculation reveals that

eH(1)− eL(θ) =
S(pL, pH , θ)

2(1 + (pL − pH)(1− θ))(1 + (pH − pL)θ)
.

44In particular, the effect which leads to a reversal of Theorem 1 in this model is distinct from
the one we observed in the case of information partitions. There, the increased competition at the
top was due to a further differentiation of intermediate valuation estimates.

45For T -increases and for the case where (MT) is violated, the behavior of u is more complex
and a detailed discussion is beyond the scope of this paper. The results of Theorem 1 remain valid
when u decreases in response to information release but one might want to reinterpret (ii), e.g.,
in terms of incentives to prevent leakage of information. The ambiguous behavior of u also shows
that F and G are generally not comparable in convex order in this model.
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Since |pH − pL| < 1, the denominator is always positive and (i) follows. For (ii),

note that S is concave in pH so it suffices to verify S(pL, pL, θ) = 2pL(1− θ) > 0 and

S(pL, 1, θ) = 2pL + 2θ − 4pLθ − θ2(1− p2L) > 0.

The last claim follows from the facts that S(pL, 1, θ) is concave in θ and that

S(pL, 1, 1) = (1 − pL)2 > 0 as well as S(pL, 1, 0) = 2pL > 0. For (iii), notice

that S can be written as

S(pL, pH , θ) = pL(1− θ)(1 + pH) + pH + θ2p2L − (1− θ)2p2H − θpL − θpLpH .

Applying in the first summand the assumed inequality pL(1 − θ) ≥ 1 − pH(1 − θ),
and rearranging, shows that S is bounded from below by the function

M(pL, pH , θ) = −p2H(2− θ)(1− θ) + pH(1 + θ − pLθ) + 1− pLθ(1− pLθ).

Since M is concave in pH , M > 0 follows from the positivity of M(pL, 0, θ) =

1−pLθ(1−pLθ) and M(pL, 1, θ) = θ(4−2pL−θ+p2Lθ). For (iv), it suffices to notice

that S is continuous and S(pL, 0, 1) = −pL(1− pL) < 0. �

Proof of Proposition 9

Since G is a mixture of uniform distributions, it suffices to study how the value of

the density at the highest valuation estimates reacts to changes in the parameters

and then to apply Corollary 1. Since (MT) holds, the value of the density at the

top is given by

T (pL, pH , θ) =
qH

eH(1)− eH(θ)
=

(1 + θ(pH − pL))2

pH
.

The relevant derivatives of T are given by

∂T

∂pL
= −2θ(1 + (pH − pL)θ)

pH
,
∂T

∂θ
=

2(pH − pL)(1 + (pH − pL)θ)

pH

and
∂T

∂pH
= −(1− (pH + pL)θ)(1 + (pH − pL)θ)

p2H
.

Since |pH −pL|θ < 1, ∂T
∂pL

is always negative, implying that F �k,m G for sufficiently

large m by Corollary 1. ∂T
∂θ

is negative when pL > pH and positive when pH > pL,
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implying that F �k,m G follows if θ is shifted into the direction of the smaller

probability. The sign of ∂T
∂pH

depends on the sign of 1 − (pH + pL)θ as indicated in

the proposition. �

Proof of Proposition 10

We only point out the differences to the proof of Proposition 9. Since (MT) is

violated, the density at the top is now given by

T (pL, pH , θ) =
qL

eL(θ)− eL(0)
=

(1 + (1− θ)(pL − pH))2

pL
.

The derivatives with respect to θ, pH and pL are given by

∂T

∂pH
= −2(1− θ)(1 + (pL − pH)(1− θ))

pL
,
∂T

∂θ
=

2(pH − pL)(1 + (pL − pH)(1− θ))
pL

and
∂T

∂pL
= −(1− (pH + pL)(1− θ))(1 + (pL − pH)(1− θ))

p2L
.

The signs of the derivatives follow like in Proposition 9 except that we do not

distinguish cases because a violation of (MT) implies (pH + pL)(1 − θ) < 1 by

Lemma 4. �
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