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Abstract

This paper analyzes how moral costs affect individual support of

morally difficult group decisions. We study a threshold public good

game with moral costs. Motivated by recent empirical findings, we

assume that these costs are heterogeneous and consist of three parts.

The first one is a standard cost term. The second, shared guilt, decreases

in the number of supporters. The third hinges on the notion of being

pivotal. We analyze equilibrium predictions, isolate the causal effects

of guilt sharing, and compare results to standard utilitarian and non-

consequentialist approaches. As interventions, we study information

release, feedback, and fostering individual moral standards.
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1 Introduction

Many morally problematic acts and decisions require the support of several

people to become implementable, and often, morally difficult tasks are dele-

gated to groups instead of one individual alone. Extreme examples are so-called

“execution teams,” juries deciding about death penalties, and group military

activity such as shooting squads. There may be different reasons for these

arrangements. Certainly, they causally affect moral responsibility in people

involved. An expert in military psychology, Dave Grossman, stresses that in-

dividual barriers towards morally problematic activity often break when people

become part of teams or groups.1 In a related vein, studies from social psy-

chology (compare the overviews in Bandura 1999 and 2016) document that

diffusion of responsibility and shared guilt reduce moral conscience in peo-

ple. In addition, a diffused notion of being pivotal can decrease moral feelings

(compare Falk and Szech 2014). Various studies from economics and related

fields further document that people are heterogeneous in their moral behavior.

Some personalities adhere to higher moral standards than others, even across

different institutional contexts.2

Motivated by these findings, we analyze how moral costs affect individual sup-

port and outcomes in morally difficult group decisions. For this purpose, we

study a threshold public good game with moral costs. We assume that agents

are heterogeneous, and that moral costs consist of three terms. The first one

is a standard cost term. The second, shared guilt, decreases in the number

of supporters. The third hinges on the notion of being pivotal. We analyze

equilibrium predictions, isolate the causal effects of guilt sharing, and com-

pare results to standard utilitarian and non-consequentialist approaches. As

interventions, we study information release, feedback, and fostering individual

moral standards.

We first prove existence and uniqueness of a symmetric Bayesian Nash equi-

librium in which transgression can happen with positive probability. We focus

on this equilibrium throughout. Its outcome “Pareto dominates” the outcome

1Compare Grossman (1996): “The individual is not a killer, but the group is” (p. 149).
2See O’Fallon and Butterfield (2005) and Loe, Ferrell and Mansfield (2000) for reviews of

questionnaire and hypothetical scenario studies. Economic evidence comes from Albrecht,
Krämer and Szech (2017) and from Deckers, Falk, Kosse and Szech (2016). Another related
economic study focusing on social behavior is Bruhin, Fehr and Schunk (2016).
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of the trivial equilibrium in which all agents remain passive.3 We find that this

Bayesian Nash equilibrium takes the form of a threshold equilibrium. Above

a certain moral cost type, agents stay out, while agents below this threshold

support moral transgression actively.

An increase in individual moral standards, e.g. through training moral virtues,

unambiguously reduces moral transgression. Yet releasing additional informa-

tion to the agents, such that moral views become more spread out, can have

different effects. If selfish benefits from transgression are high, information

release can fight transgression. The opposite is true if selfish benefits are low.

The reason behind is that information release shifts probability mass both into

the upper and into the lower tail of the distribution of the agents’ moral types.

Morally “good” agents tend to become better, “bad” agents tend to become

worse. A transgression that is only appealing to the morally worst agents can

thus materialize more likely if information is released, while a transgression

that requires the support of high moral types can become prevented more

easily.4

Information on the exact number of fellow supporters affects feelings of moral

responsibility as guilt can be shared with these members. Yet in many sit-

uations, this precise information may not become viable. For example, in a

shooting squad, it may be that only the outcome itself can be seen. Therefore,

we also analyze the case in which feedback on the number of supporters is not

provided. Again, non-trivial, symmetric Bayesian equilibria exist. These are

all in threshold strategies. We find that these thresholds are all larger than

the threshold in the corresponding setting with feedback. Transgression there-

fore becomes more likely if feedback is lacking. The technical reason behind is

Jensen’s inequality. Moral costs diffuse better if agents can only build a condi-

tional expectation about how many other agents supported the transgression.

This prediction could be directly tested in an economic experiment.

We further contrast our findings with the case in which guilt does not diffuse in

3Pareto domination appears here in the sense that all agents strictly prefer the expected
outcome of the symmetric Bayesian Nash equilibrium to the outcome of the trivial equilib-
rium. Pareto improvements here go together with a larger likelihood of moral transgression.

4These results consider information release that tends to foster more extreme opinions in
agents who already hold different views. In contrast, information that fosters consensus in
the population of agents leads to the reversed effects.
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the number of agents. The quantitative predictions differ drastically. The im-

pact of guilt diffusion is roughly comparable to multiplying the selfish benefit

by the number of required supporters: We observe a kind of ‘strategic equiv-

alence’ between the game in which guilt diffuses in the number of supporters,

and the comparison game with a much smaller selfish benefit. Precisely, the

selfish benefit is divided by the number of supporters needed, one agent less is

required, and the total group size is one agent less.

Finally, we compare our predictions to those of the companion model in which

agents’ moral reasoning follows a purely non-consequentialist approach. What

matters for feelings of guilt is now the intention, not the outcome. If agents

act as supporters, they face moral costs – regardless of whether transgression

materializes or not. In this model, symmetric equilibria in which transgression

occurs with positive probability only exist if the selfish benefit from transgres-

sion is sufficiently high. If the benefit is large, there exist multiple equilibria,

all in threshold strategies. The equilibrium with the highest transgression

probability Pareto dominates.

1.1 Related Literature

Many previous applications of discrete public good games to morally relevant

action have studied so-called bystanding. Bystanders are people who observe

a crime or accident. Often they do not help the person in distress. A rich

empirical literature has documented that helping becomes less likely if others

could help as well. Helping drastically decreases in the number of bystanders,

see e.g. Darley and Latané (1968), Latané and Nida (1981), and Fischer et

al. (2011) for an overview. For a victim, in order to receive help, it is often

much better to have just one or few observers than many. This finding has

been coined as the “bystander effect.”

In social psychology and in sociology, guilt diffusion and reduced feelings of

breaking a norm have been put forward as explanations for the bystander effect

(see also Zimbardo 2007). Diffusion of guilt has also been found to operate

in committee situations (compare Bandura, Underwood and Fromson 1975,

Bandura 1999, 2016). In a related vein, empirical studies have shown that a
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reduced notion of being pivotal decreases feelings of moral responsibility, in

individual decision contexts and in committees (Falk and Szech 2014).5

In contrast, the game-theoretic literature on bystanding, such as Harrington

(2001), Osborne (2004), and Crettez and Deloche (2011), has argued via mixed

equilibrium effects without diffusion of (moral) costs. The argument goes as

follows. In mixed equilibrium, coordination is difficult. A high individual

likelihood of helping could result in very many bystanders helping. This would

be an unneeded over-provision of costly help. Therefore, avoiding this over-

provision of help to large extents, in mixed equilibrium, individual willingness

to help is small, and drastically decreases in the number of bystanders. This

explanantion works well for situations in which observers cannot coordinate.

Yet the empirical literature on the bystanding effect also reports many cases

in which observers could coordinate such that over-provision of help could

have been prevented.6 In these cases, the mixed equilibrium explanation from

standard game theory does not apply. It is thus likely that the aforementioned

effects of reduced notions of moral responsibility and guilt diffusion play a

critical role for the bystanding effect, specifically in cases where coordination

of potential helpers is possible.

This motivates us to enrich the standard game-theoretic approach. We assume

that costs of behaving in morally problematic ways can be shared and thereby

diffuse, and notions of being pivotal affect feelings of guilt. Our model builds

on the benchmark model due to Palfrey and Rosenthal (1984). We extend this

model by including incomplete information7 about other agents’ types and

a richer model of how both, own behavior and the behavior of others affect

moral costs. This enables us to study the effects of information provision and

feedback. Moreover, we can analyze the impact and interplay of different types

of moral costs. The complete information game possesses pure equilibria with

perfect coordination as well as mixed equilibria. In the incomplete information

case, the pure equilibria break away while the mixed equilibria survive. This

renders the mixed equilibria specifically relevant.

5Sobel (2010) analyzes perceptions of being pivotal in market trading.
6See the overview in Fischer et al. (2011).
7There exists a literature on public good games with incomplete information, e.g. Nitzan

and Romano (1990). Yet we are not aware of any contribution which addresses moral costs
or cost sharing in these settings.
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We first analyze the consequentialist moral perspective. Costs for immoral

activity only arise if transgression materializes. In Section 5.2, we contrast

this with a purely principle-based (Kantian) moral perspective under which

moral costs do not hinge on the actual outcome.8 This part of the analysis is

related to Huck and Konrad (2005) who consider mixed equilibria of a similar

voting game with complete information. They study a committee situation in

which agents vote about confiscating foreign investment. Confiscation leads

to a selfish benefit to the group yet voting for confiscation comes along with

Kantian costs of guilt. Guilt is thus independent of the voting outcome, and

they assume that it cannot be shared with others. They find that transgression,

i.e. confiscation, becomes less likely if the group size becomes larger.

Dufwenberg and Patel (2015) also assume a complete information environment

and focus on pure equilibria. They add reciprocity preferences and cost-sharing

(similar to our guilt diffusion) to Palfrey and Rosenthal’s model. With this

combination (and in the absence of private information), they show that there

can be efficient equilibria which do not require coordination. An earlier appli-

cation of “diffusive” costs in complete information public good games is found

in Weesie and Franzen (1998) who study the “volunteer’s dilemma,” i.e. the

special case in which only one single agent needs to contribute.

Diffusion of moral costs further plays a crucial role in the analysis of Lindbeck,

Nyberg and Weibull (1999). They consider a continuum situation such that

coordination is always feasible. Agents need to decide if they want to work and

thereby support others, or if they want to free-ride on others’ contributions.

Opting for the latter comes with social stigma and thus with a morally relevant

cost, yet this cost decreases (and thus diffuses) the larger the fraction of free-

riders is. Agents are heterogeneous in their types such that the appeal of

working varies across them. Lindbeck et al. analyze the equilibria of this

model and demonstrate that sorting is feasible such that agents for whom

working is less costly work, while others free-ride. In a sense, these equilibria

have parallels to our threshold equilibrium in which agents with low moral cost

types support transgression, while others stay out.

8The study of principle-based moral approaches within game-theoretic models goes back
to Harsayi, see e.g. Harsanyi (1977). Kranz (2010) applies this approach in various economic
settings. This includes non-binary public good games in which abstaining causes moral costs
for some agents.
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2 Model and Basic Properties

This section introduces the morally relevant threshold public good game we are

going to study. Motivated by recent empirical findings, we assume that moral

costs are heterogeneous and consist of three parts. The first one is a standard

cost term. The second one is diffusive in the number of people sharing in. The

third one hinges on the notion of being pivotal.

We prove existence and uniqueness of a non-trivial, symmetric equilibrium.

We will rely on this equilibrium for all predictions.

2.1 The Model

We consider n ≥ 1 agents who each face the decision to support a morally

difficult action. One may want to think about voting Yes for going to war

instead of No, or for taking some morally shaky business endeavor instead of

playing fair.9 The action (which we will also call transgression) requires the

support of at least k of these agents in order to materialize. We are thus in a

threshold public good game with moral costs.

We assume that if transgression happens, all agents receive a benefit V > 0

each (e.g. the country is defended, the group becomes richer etc.). Otherwise

each agent receives 0. Transgression is associated with moral costs. These

only accrue in the active supporters, i.e. in those who voted Yes instead of

No. Motivated by recent empirical research from economics, business ethics,

and social and military psychology, such as Bandura (1999, 2016), Deckers et

al. (2016), Falk and Szech (2013, 2014), Grossman (1996), Loe et al. (2000),

and Zimbardo (2007), these moral costs are heterogeneous and consist of three

terms. The first term is a standard cost from the transgression happening. The

second term captures guilt sharing and decreases in the number of supporters.

The third term hinges on the notion of being pivotal.

Each agent has a private moral type xi. Types are drawn independently from

a commonly-known, continuous distribution function F with F (0) = 0 whose

density function f is strictly positive over the support (0, a), a ∈ (0,∞] of

9The activity may thus be either morally difficult, or morally completely wrong. In the
latter case, it is clear from a designer’s point of view that transgression should be prevented.
This is the perspective we will take when it comes to political interventions, see Section 4.
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F . The three components of moral costs are parametrized by the non-

negative constants α, β and γ. The first one, α · xi, accrues if the agents

successfully supports the transgression. We will sometimes call it the non-

diffusive part in order to differentiate it from the second cost term. The second

moral cost term captures the concept of guilt sharing, β ·xi/Y . Y denotes the

total number of agents who support the transgression. Moral costs become

smaller the more supporters guilt can be shared with. Third, the agent faces a

cost of γ ·xi which materializes if he is pivotal i.e. if the transgression would not

have occurred without his support. If the transgression does not materialize,

we assume that agents do not feel guilty. We thus follow a consequentialist

approach.10 Agents who do not support the transgression do not face any

moral costs either.

The collective decision process is modeled as a threshold public good game.

Agents simultaneously opt either for Yes or No. If at least k agents choose Yes,

transgression happens. k ∈ {1, . . . , n} is commonly known. This game can be

interpreted as the result of a decision rule that was prescribed or agreed upon

beforehand. Alternatively, it can be thought of as a game of volunteering to

participate in an immoral action, and k as the minimum number of volunteers

needed to carry it out successfully.

To sum up, the realized utility of agent i from supporting immoral activity,

i.e. opting for Yes, is(
V − xi

(
α +

β

1 + Y−i

))
1{Y−i≥k−1} − γxi 1{Y−i=k−1} (1)

where Y−i denotes the number of agents other than i who act as supporters.

Realized utility from choosing No is

V 1{Y−i≥k}. (2)

We assume throughout that at least one of the guilt parameters α, β and γ is

positive.

10See Section 5.2 for a discussion of the corresponding purely non-consequentialist ap-
proach.
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2.2 Equilibrium Analysis

The solution concept we employ is Bayesian Nash equilibrium. We focus on

equilibria which are symmetric in the sense that agents with the same type

take the same moral decision.

For k > 1 there exists a pooling equilibrium in which all agents choose No

independent of their type. All agents receive a utility of 0 in this equilibrium.

As is common e.g. in the voting-games and matching literatures, we ignore

this equilibrium in the following and focus on the Pareto-superior equilibria

in which the morally difficult action is taken with positive probability.11 As a

first main result, we find that there always exists exactly one equilibrium of

this type.

Theorem 1. There exists a unique symmetric Bayesian equilibrium in which

transgression happens with positive probability. In this equilibrium, agent i opts

for Yes if xi ≤ θk,n, and for No if xi > θk,n. θk,n is the unique solution of

V b(n− 1, k − 1, F (θk,n))

=θk,n

(
n−1∑
j=k−1

(
α +

β

1 + j

)
b(n− 1, j, F (θk,n)) + γb(n− 1, k − 1, F (θk,n))

)
(3)

with

b(n, j, p) =

(
n

j

)
pj(1− p)n−j.

If k < n, θk,n lies in the interior of the support of F , F (θk,n) ∈ (0, 1) such that

the equilibrium is a separating equilibrium.12

Equation (3) has a straightforward interpretation in terms of the costs and

benefits of a pivotal agent. The left hand side consists of the gains in utility

if the agent is pivotal, i.e. if exactly k − 1 other agents are willing to take

11As agents can guarantee themselves a non-negative payoff by choosing No, all agents
must earn a non-negative payoff in any equilibrium. Thus any agent strictly preferring Yes
in an equilibrium in which the morally difficult action is taken with positive probability,
must earn a strictly positive expected payoff.

12We refer to equilibria in which agents’ actions depend on their types as “separating
equilibria.” Strictly speaking, they are only “semi-separating” as we cannot infer an agent’s
type from his action because there are infinitely many types and only two actions.
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action. On the right hand side we find the expected costs of an agent with

threshold-type θk,n.13

Throughout the paper, we focus on three measures of moral transgres-

sion. θk,n captures individual willingness to support morally difficult activity.

Morally difficult behavior can increase on an individual level if institutional

design lowers moral costs, e.g. via introducing better possibilities for guilt

sharing. We measure such institutional effects on the individual by the quan-

tity θk,n, i.e. by the threshold-type who is indifferent between Yes and No.

Pk,n refers to the likelihood of transgression materializing. Nk,n is the num-

ber of agents supporting transgression. Pk,n and Nk,n are thus outcome-based

measures, derived from the individual thresholds. The equilibrium probability

Pk,n with which transgression occurs is given by

Pk,n =
n∑
j=k

b(n, j, F (θk,n)),

and the according equilibrium expected number of supporters isNk,n = nF (θk,n).

3 Comparative Statics and Limit Behavior

In this section, we establish the comparative statics for the game, as well as

the convergence behavior as the number of agents grows large.

We analyze the comparative statics in the benefit V , the moral cost parameters

α, β, and γ, the number of supporters necessary k, and the overall group size

n. To this end, it proves useful to rewrite the equilibrium condition (3) into

the form
V

θk,n
= H(F (θk,n), α, β, γ, k, n) (4)

with

H(F, α, β, γ, k, n) = γ +
n−1∑
j=k−1

b(n− 1, j, F )

b(n− 1, k − 1, F )

(
α +

β

1 + j

)
. (5)

13Uniqueness holds up to the decision of agents with type θk,n. These are indifferent
between Yes and No. We ignore this technicality in the following as it only becomes relevant
with a probability of zero.
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The left hand side of (4) is strictly decreasing from +∞ to 0 in θ while

H(F (θ), α, β, γ, k, n) is increasing in θ with

H(0, α, β, γ, k, n) = α +
β

k
+ γ.

The two functions thus intersect once, at the equilibrium threshold θk,n. There-

fore, if we wish to determine the comparative statics, e.g. the effect of an

increase in V on equilibrium thresholds, we can argue as follows. Increasing

V shifts the function V/θ upwards. The point of intersection and thus θk,n

accordingly move to the right. Increasing the benefit V therefore increases the

equilibrium threshold and thus induces more agents to support the transgres-

sion. The next proposition collects further basic properties of the equilibrium

threshold θk,n and the associated outcome-based measures Pk,n and Nk,n.

Proposition 1.

(i) θk,n, Pk,n and Nk,n are increasing in the benefit V and decreasing in the cost

parameters α, β and γ.

(ii) If α + β > 0, θk,n and Nk,n are increasing in k.

The monotonicity behavior of θk,n and Nk,n in k can be interpreted as follows.

If k increases, i.e. if the number of supporters necessary increases, more agents

become willing to support the transgression both individually and overall, in

expectation. There are thus fewer agents who hope to free-ride on others with

lower moral standards who could support the transgression instead.

In the case α + β = 0, in which guilt purely depends on the notion of being

pivotal, it holds that

θk,n =
V

γ
. (6)

Thus, thresholds are independent of the voting rule and of the size of the group.

The reason behind is that agents compare their selfish benefit from transgres-

sion only to the cost that emerges if they turn out to be pivotal. Therefore,

there are no incentives to free-ride on others in this case. Accordingly, the

number of supporters Nk,n = nF (V/γ) is also independent of k, while Pk,n,

the probability of finding at least k supporters decreases with k.

The dependence of the transgression probability Pk,n on k is in general more

complex as demonstrated in Figure 1. The Figure shows that in a setting with
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Figure 1: Pk,25 as function of k for n = 25, V = 1, β = 1, α = γ = 0 and the
exponential distribution F (x) = 1− exp(−x).

purely diffusive guilt (α = γ = 0), the probabilities form a U -shape. Trans-

gression probability is smallest for an intermediate level of k. The intuition

is as follows. If k is small, it is likely that there exist some agents with very

low moral types. These will implement the transgression. For larger k, higher

moral types would have to give their support. This only becomes an option

if guilt diffuses well, i.e. if very many agents are required. For intermedi-

ate values of k neither of the two mechanisms helps agent much to overcome

their moral concerns and, accordingly, immoral action materializes only with

comparatively small probability.14

These effects still play a role in the general model in which guilt can only partly

be shared, thereby precluding an easy comparative statics analysis of Pk,n. Yet

there is one crucial difference. If guilt has either a non-diffusive component

(α > 0) or there are costs from being pivotal (γ > 0) (and when the support of

F is unbounded), there will be some types who do not support transgression

regardless of k and n. These very moral agents render transgression for k close

to n less likely. The following lemma summarizes the results.

14See Rothenhäusler, Schweizer and Szech (2015) for further discussion and some analyt-
ical results on this U -shape.
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Lemma 1.

(i) If α + γ > 0, individual thresholds are bounded,

θk,n ≤
V

α + γ
.

In particular, if the support of F is unbounded, there exists a positive mass of

agent types with high moral values who never support transgression, indepen-

dently of k and n.

(ii) If α = γ = 0, i.e. if guilt is fully diffusive as n grows large, for any type x

in the support of F there exist k and n such that x < θk,n. Thus any type x

can become a supporter of transgression.

Finally, let us consider the limit results if the population size grows large.

Proposition 2. Suppose that α + β > 0. Then the following claims hold.

(i) limn→∞ θk,n = 0.

(ii) limn→∞Nk,n =∞.

(iii) limn→∞ Pk,n = 1.

While individual thresholds generally converge to 0, the expected number of

supporters Nk,n becomes arbitrarily large. We thus find an overshooting ef-

fect. In the limit, instead of the required k, infinitely many agents become

supporters. This holds even if only one supporter is necessary, and also if only

α is strictly positive and β is 0, i.e. if guilt does not diffuse. Instead of one,

infinitely many agents join in. Accordingly, the transgression probability Pk,n

converges to 1. The reason behind is that the number of agents with very

low moral standards grows that fast in n that it overrules the counteractive

effect from the threshold which decreases in n. There is uncertainty about

whether there are indeed many enough low types to free-ride on. This makes

many more agents think about joining in than necessary. Coordination is im-

possible, and the gains from a transgression that is supported by too many

are higher than the losses from the transgression not happening. In the case

α + β = 0, guilt only depends on notions of being pivotal. As shown in (6),

the thresholds θk,n are positive and independent of k and n. Also in that case,

(ii) and (iii) are satisfied.15

15Each agent participates with a probability p = F (V/θ) that does not depend on n. This
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4 Interventions

In this section, we study the impact of three different interventions: training

agents’ individual moral virtues, increasing the precision of their information,

and varying whether they receive feedback about others’ support behavior after

the decision (as in the basic model) or not.

4.1 Trained Virtues

Possibilities for training moral virtues have already been put forward by Aris-

toteles (see Barnes 1984). The next proposition demonstrates that an interven-

tion which induces an upwards shift in the distribution of moral types indeed

reduces all three measures of transgression. To this end, we compare two ver-

sions of our model with respective distributions F and G while we keep all

other parameters constant. We indicate the distribution dependence through

a superscript on the thresholds, θFk,n and θGk,n, and analogously for all other

quantities.

Proposition 3. Suppose that G dominates F in terms of first order stochas-

tic dominance, G(x) ≤ F (x) for all x ≥ 0, so that G can be interpreted as a

(non-linear) upwards shift of F . Then it holds that θGk,n ≥ θFk,n, NG
k,n ≤ NF

k,n,

and PG
k,n ≤ P F

k,n.

An upwards shift in the distribution of moral types thus establishes higher

moral standards in equilibrium. According to all three morally relevant mea-

sures, transgression decreases.

In a related vein, one may think about the impact of choice architectures. The

idea of nudging agents towards more moral or socially responsible behavior

has been discussed extensively in recent public debate, see e.g. Thaler and

Sunstein (2008). Choice architectures may affect the moral costs that emerge

from transgression directly. See e.g. the omission-commission bias as reported

in Spranca, Misk and Baron (1991). These effects can be captured by a shift

in the distribution of costs, as seen above. In other cases, nudging may affect

the decision-making process, yet keep the underlying moral costs unchanged.

implies Nk,n = np→∞ and leads to Pk,n → 1 far more directly than in the general case.
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4.2 Information Release

We next investigate the effect of information release on moral outcomes. We

here consider a situation in which information release leads to a more spread

out distribution of moral types.16

We now interpret F as the distribution of (conditionally expected) moral costs,

based on coarse information. Through releasing information, a designer can

induce a more spread-out distribution G in which each agent has learned his

moral costs more precisely.17 To formalize the notion of G being more spread

out than F we rely on the following single-crossing criterion. G is more spread

out in the sense of the single-crossing criterion, G �SC F , if there exists x0

such that F (x) ≤ G(x) for x ≤ x0 and G(x) ≤ F (x) for x ≥ x0. If F and

G share the same mean – as is the case if agents employ Bayesian updating –

single-crossing is a sufficient condition for G being a mean-preserving spread

of F .18

The next proposition demonstrates that the effect of information release cru-

cially depends on the potential benefits of the moral transgression, i.e. on the

level of V .

Proposition 4. Fix all parameters except for V and suppose that G is more

spread out than F in single-crossing precision, G �SC F . Then there exists

v0 ≥ 0 with the following properties.

(i) For V ≥ v0, we have θGk,n ≥ θFk,n, NG
k,n ≤ NF

k,n, and PG
k,n ≤ P F

k,n.

(ii) For V ≤ v0, we have θGk,n ≤ θFk,n, NG
k,n ≥ NF

k,n, and PG
k,n ≥ P F

k,n.

Thus, additional information decreases transgression if stakes are high, but

increases transgression if stakes are low. This happens because information

release shifts probability mass both into the upper and into the lower tail.

Morally “good” agents become better, and “bad” agents become worse. If

stakes are low, only the worst agents in the population act as supporters. The

16The opposite case is, of course, also possible. Information could foster consensus in a
population, which would lead to a less spread out distribution of moral types. In the latter
case, the analysis thus applies in the reversed way.

17This is in line with Ganuza and Penalva (2010)’s model of information release.
18See Diamond and Stiglitz (1974) for further discussion of this relation. We do not need

the assumption of F and G sharing the same mean and thus do not impose it.
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moral costs of these agents tend to decrease as the distribution becomes more

spread out. Therefore, transgression becomes more likely.

Conversely, if stakes are high, even good agents with high costs are near the

threshold of becoming supporters. As the upper tail of the distribution be-

comes more spread out, these agents tend to end up above the threshold and

thus do not become supporters. Hence transgression becomes less likely.

4.3 Feedback

In the baseline model, we assume that supporters of the transgression observe

the precise number of other supporters and share their guilt with these. In the

following, we contrast this baseline setting with the situation in which agents

only observe whether the transgression has occurred. Thus, they do not learn

the precise number of supporters. We call this counterpart model the game

without feedback.

In the game without feedback, utility from voting Yes is given by(
V − xi

(
α +

β

1 + E[Y−i|Y−i ≥ k − 1]
+ γP (Y−i = k − 1|Y−i ≥ k − 1)

))
· 1{Y−i≥k−1}

where the conditional expectation is taken under the distribution induced by

equilibrium behavior. For instance, in an equilibrium in which agents vote Yes

whenever their type is below the threshold θ̃k,n, this conditional expectation is

given by

E[Y−i|Y−i ≥ k − 1] =

∑n−1
j=k−1 j b(n− 1, j, F (θ̃k,n))∑n−1
j=k−1 b(n− 1, j, F (θ̃k,n)

.

Similarly, we have

P (Y−i = k − 1|Y−i ≥ k − 1) =
b(n− 1, k − 1, F (θ̃k,n))∑n−1
j=k−1 b(n− 1, j, F (θ̃k,n)

.

The next proposition shows that symmetric equilibria of the game without

feedback are equilibria in threshold strategies, just like in the baseline model.

Such an equilibrium always exists, and the moral thresholds θ̃k,n in any such

equilibrium are higher than the thresholds θk,n in the corresponding baseline
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model. Absence of feedback thus makes diffusion of guilt more effective, ren-

dering moral transgression more likely.19

Proposition 5. The game without feedback possesses a symmetric equilibrium

in which transgression happens with positive probability. All such equilibria are

equilibria in threshold strategies where the thresholds θ̃k,n solve

V

θ̃k,n
= H̃(F (θ̃k,n), α, β, γ, k, n) (7)

with

H̃(F, α, β, γ, k, n) = α
B(n− 1, k − 1, F )

b(n− 1, k − 1, F )
+ γ

+ β
B(n− 1, k − 1, F )

b(n− 1, k − 1, F )

1∑n−1
j=k−1

b(n−1,j,F )
B(n−1,k−1,F )

(1 + j)

and

B(n− 1, k − 1, F ) =
n−1∑
j=k−1

b(n− 1, j, F ).

Moreover, any solution θ̃k,n to (7) satisfies θ̃k,n ≥ θk,n where θk,n is the unique

equilibrium threshold of the baseline model with feedback.

Accordingly, the transgression probability P̃k,n and the expected number of

supporters Ñk,n are larger than if feedback on the number of supporters is pre-

cise. The lack of feedback renders it easier for agents to share their guilt with

others. Therefore, they become more willing to support moral transgression.

Technically, this result stems from Jensen’s inequality and the convexity of

moral costs in the number of supporters. Without precise knowledge of the

numbers of supporters, guilt tends to diffuse better.

5 Diffusion of Guilt

In this section, we further explore the effect of diffusion of guilt. Section 5.1

discusses the role of diffusion of guilt compared to the other components of

19We do not show uniqueness of equilibrium yet numerical results suggest that it holds.
We prove existence and a comparison between any equilibrium and the unique equilibrium
of the baseline model.
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moral costs. Section 5.2 describes how predictions change if agents adopt a

non-consequentialist perspective, thus experiencing guilt whenever they act as

supporters – regardless of whether transgression actually happens.

5.1 Isolating the Effect of Diffusion

We will see that there is an almost substitutive relation between the diffusive

and the non-diffusive components of moral costs. By and large, if guilt is

completely diffusive (α = 0) predictions are quite comparable to the case in

which guilt is completely non-diffusive (β = 0) but where the benefit V from

transgression is almost k times larger. Theorem 2 specifies this relationship in

all precision.

Theorem 2. Denote by θk,n(α, β, γ, V ) the equilibrium threshold of the game

with parameters α,β,γ,V , k and n as defined in (4).

(i) Fix w ∈ [0, 1] and α0 > 0 and define θ1 and θ2 as the equilibrium thresholds

of the game without diffusion (β = 0) for (k, n) and for (k + 1, n+ 1),

θ1 = θk,n(α0, 0, γ, V ) and θ2 = θk+1,n+1(α0, 0, γ, V ).

Then it holds that

min(θ1, θ2) ≤ θk,n(wα0, k(1− w)α0, γ, V ) ≤ max(θ1, θ2).

(ii) For any δ > 0, we have θk,n(0, δ, 0, V ) = θk+1,n+1(δ, 0, 0, k · V ).

(iii) We have the bound

θk,n(α, β, γ, V ) ≤ θk,n(α, 0, γ, V ) ≤
(

1 +
β

kα

)
θk,n(α, β, γ, V ).

The theorem demonstrates a kind of strategic equivalence between the game

with n agents out of whom k are required for transgression to happen and guilt

diffuses in the number of supporters, and the comparison game in which guilt

does not diffuse. The number of agents needs to be mildly adjusted by one,

both for the group size and for the number of agents required. The benefit

from transgression needs to be inflated by k.

Part (i) illustrates that up to adjusting between (k, n) and (k+1, n+1), decreas-
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ing the non-diffusive guilt term still leads to the same equilibrium thresholds

if the diffusive term is increased by k-times that amount. Part (ii) focuses

on the case in which notions of being pivotal do not affect guilt, γ = 0. Up

to adjusting k and n by one, if guilt diffuses, (α, β) = (0, δ), equilibrium

thresholds are identical to those of the game with perfectly non-diffusive guilt,

(α, β) = (δ, 0) if the benefit V is inflated by k.20 Part (iii) assesses quanti-

tatively how the diffusive component of guilt affects equilibrium thresholds.

Equilibrium thresholds of the two games with β > 0 and β = 0, lie within a

factor 1 + β
kα

of each other. This holds independently of the distribution of

moral types, F . For fixed α and β, the impact of the diffusive guilt compo-

nent on equilibrium behavior vanishes quickly as k increases. Guilt sharing

between agents is then so strong that this costs component has little impact

on the agents’ behavior.

5.2 A Purely Non-Consequentialist View

So far, guilt hinged on consequences of actions instead of intent. In this section,

we focus on the latter. Under this purely non-consequentialist (or Kantian)

moral perspective, agents face moral costs from choosing Yes, independent of

the outcome.21 As before, we assume that agents share guilt with other sup-

porters, while notions of being pivotal play not role anymore as consequences

do not affect guilt.

The following dichotomy emerges. For small values of the selfish benefit V ,

the equilibrium in which all agents opt against transgression is the unique

symmetric equilibrium. For larger V , there are several symmetric equilibria in

which the transgression occurs with strictly positive probability. The equilib-

rium with the highest transgression probability Pareto-dominates.

Moral costs for agent i from opting for Yes are now given by

V 1{Y−i≥k−1} − xi
(
α +

β

1 + Y−i

)
.

20This is, of course, not a strategic equivalence in the strictest sense as the number of
agents mildly varies across the two games.

21In the terminology of Admati and Perry (1991), we compare our basic model, a sub-
scription game, to the associated contribution game.
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We thus dropped the term that captured notions of being pivotal which was

inherently consequentialist. Realized utility from voting No is given by

V 1{Y−i≥k}.

The following proposition shows that – under mild conditions – transgression

occurs in equilibrium only if V is sufficiently large.

Proposition 6.

(i) For sufficiently large V , there exist symmetric equilibria in which trans-

gression occurs with positive probability. These are in threshold strategies.

Equilibrium thresholds solve

V

θ̄k,n
= H̄(F (θ̄k,n), α, β, k, n) (8)

with

H̄(F, α, β, k, n) =
n−1∑
j=0

b(n− 1, j, F )

b(n− 1, k − 1, F )

(
α +

β

1 + j

)
.

If two thresholds θ̄
(1)
k,n and θ̄

(2)
k,n > θ̄

(1)
k,n both solve (8), they both correspond to

equilibria. The equilibrium associated with the larger threshold θ̄
(2)
k,n Pareto

dominates the other.

(ii) Assume f(0) < ∞ and k > 2. Then, for sufficiently large V , there exist

at least two symmetric equilibria in which transgression occurs with positive

probability.

(iii) Assume f(0) < ∞ and k > 1. Then, for small V , the unique symmetric

equilibrium is the one in which all agents choose No.

Thus, in equilibrium, small temptations V do not cause moral transgression

– but sufficiently large ones do. This is due to a “two-sided” coordination

problem.22 For an agent, in addition to the possibility of free-riding on other

agents’ Yes-votes, opting for No has another appeal. It avoids the risk of facing

moral costs without reaping any benefits. For small V , the possibility to co-

ordinate on the transgression breaks down.The worst agents in the population

22The two-sided character of this coordination problem also causes the multiplicity of
equilibria for large V .
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now fear that the other agents with their “holier than thou” attitudes will let

them down.

6 Conclusion

If people engage in “psychosocial manoeuvres – often aided by the institutions

[...], which absolve them from moral responsibility for harmful acts” (Haidt and

Kesebir, 2010, p. 812), further research is needed to understand and disen-

tangle the mechanisms behind institutionally driven moral transgression. This

paper contributes to this endeavor. So far, economic models of group activity

in morally relevant contexts are rare. Notable exceptions are Huck and Konrad

(2005) looking into committee decisions on confiscating foreign investments,

Sobel (2010) analyzing moral responsibility in market activity, and Huesmann

and Wambach (2015) studying mechanisms for rewarding dangerous services

of moral relevance. These applications outline already that studying moral

behavior can come with different goals.

The design of institutions can likely foster morally challenging behavior when

societies need it, and limit unwanted transgression such as corruption and cru-

elty. Speaking with the social psychologist Albert Bandura (1999, p. 297),

“...societies cannot rely entirely on individuals to deter human cruelty. Civi-

lized life requires, in addition to human personal codes, effective social safe-

guards against the misuse of power for exploitative and destructive purposes.”

We believe that economic research can and should contribute to shaping such

social safeguards. It should contribute to a deeper understanding of how in-

stitutional design affects morally relevant decision-making, and shed light on

effects that may be unwanted.

A Proofs

Proof of Theorem 1. We first show that all equilibria, symmetric or not, in

which transgression happens with positive probability must be equilibria in

threshold strategies. For each agent i, there is a threshold θk,n,i ∈ [0,∞] such

that i votes Yes if xi < θk,n,i and No if xi > θk,n,i. To see this, fix the strategies

of the other agents. In an equilibrium in which transgression happens with
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positive probability, at least k− 1 of the other agents must vote Yes with pos-

itive probability. Assume agent i weakly prefers voting Yes over No for some

type xi. Comparing the expectations of (1) and (2) implies that this preference

must be strict for all lower types. Likewise, if agent i weakly prefers voting No

over Yes for some type xi, this preference must be strict for all higher types.

Thus, all best responses to the other agents’ strategies are threshold strategies.

Therefore, all equilibria in which transgression happens with positive proba-

bility are equilibria in threshold strategies.23

For k < n, we now show that there exists a unique threshold θk,n > 0 with the

property that if all agents play a threshold strategy with θk,n, an agent with

type θk,n is indifferent between voting Yes and No. We treat the case k = n

separately at the end. Consider an agent with type x and assume that all

other agents follow a threshold strategy with θk,n > 0. Expected payoff from

voting Yes is then given by

n−1∑
j=k−1

b(n− 1, j, F (θk,n))

(
V −

(
α +

β

1 + j

)
x

)
− b(n− 1, j, F (θk,n)) γ x (9)

where the Binomial distribution arises as the other agents independently vote

Yes with probability F (θk,n). Expected payoff from voting No is given by

n−1∑
j=k

b(n− 1, j, F (θk,n))V. (10)

Equilibria are characterized by thresholds θk,n for which the two expressions

coincide for x = θk,n. Equating (9) and (10) for x = θk,n yields condition (3) as

stated in the proposition. It remains to show existence of a unique (positive)

solution. To this end, we write (3) as

V

θk,n
= H(F (θk,n), α, β, γ, k, n) (11)

23As the equilibrium in which all agents always vote No is also in threshold strategies, it
follows that in fact all symmetric equilibria are in threshold strategies.
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with

H(F, α, β, γ, k, n) = γ +
n−1∑
j=k−1

b(n− 1, j, F )

b(n− 1, k − 1, F )

(
α +

β

1 + j

)
.

The left hand side of (11) is strictly decreasing in θk,n, diverging to ∞ at 0

and becoming arbitrarily small for large θk,n. Writing the right hand side as

γ +
n−1∑
j=k−1

(
α +

β

1 + j

) (n−1
j

)(
n−1
k−1

) ( F (θk,n)

1− F (θk,n)

)j−k+1

,

we see that it strictly increases from α + β
k

+ γ to ∞ as θk,n moves through

the support of F . This proves the existence of a unique solution θk,n in the

interior of the support.

It remains to study the case k = n. Like in the case of k < n, an interior

separating equilibrium must be characterized by (11) which becomes

V

θn,n
= α +

β

n
+ γ (12)

and thus

θn,n =
V

α + β
n

+ γ
. (13)

In the case where this choice of θn,n lies above the support of F (and only

then), all agents voting Yes regardless of their type is an equilibrium.24

Proof of Proposition 1. By (11), θk,n is characterized as the intersection be-

tween the decreasing function V/θk,n and the function H which is increasing

in θk,n via F . Increasing the decreasing function V/θk,n by increasing V neces-

sarily shifts the point of intersection to the right, thus increasing θk,n. Similarly,

θk,n decreases in α, β and γ: Increasing any of these parameters increases the

function H, thus shifting the intersection to the left. The claims about Nk,n

and Pk,n in (i) follow from the behavior of θk,n: Nk,n and Pk,n can be seen

as the mean and the probability of observing a realization above k − 1 for a

binomial distribution with “success probability” F (θk,n). Both quantities in-

crease in this probability. To prove (ii), we first show the following alternative

24The separating equilibrium thus degenerates to a pooling equilibrium.
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representation of the function H:

H(F, α, β, γ, k, n) = α

n−1∑
j=k−1

b(n− 1, j, F )

b(n− 1, k − 1, F )
+
β

k

n∑
j=k

b(n, j, F )

b(n, k, F )
+ γ. (14)

To see this, we rewrite the part of H which depends on β. Observe first the

following connection between binomial distributions for (k−1, n−1) and (k, n):

n−1∑
j=k−1

b(n− 1, j, F )
1

1 + j

=
n−1∑
j=k−1

(
n− 1

j

)
F j(1− F )n−j−1

1

1 + j

=
1

n

n−1∑
j=k−1

(
n

j + 1

)
F j(1− F )n−j−1

=
1

n

n∑
l=k

(
n

l

)
F l−1(1− F )n−l

=
1

nF

n∑
l=k

b(n, l, F ).

Combining this identity with b(n− 1, k − 1, F ) = k
nF
b(n, k, F ) yields

β

∑n−1
j=k−1 b(n− 1, j, F ) 1

1+j

b(n− 1, k − 1, F )
=
β

k

∑n
j=k b(n, j, F )

b(n, k, F )

and thus (14). From (14), we can conclude that H is decreasing in k. This

follows immediately from the fact that both∑n−1
j=k−1 b(n− 1, j, F )

b(n− 1, k − 1, F )
and

∑n
j=k b(n, j, F )

b(n, k, F )

are reciprocals of the failure rate of the Binomial distribution which is increas-

ing in k, see Johnson, Kotz and Kemp (1992), Chapter 3. Consequently, θk,n is

increasing in k as an increase in k decreases H and thus shifts the intersection

of V/θ and H to the right. As Nk,n = nF (θk,n) depends on k only through

θk,n, it increases in k as well.

Proof of Lemma 1. To see (i), note that H(F, α, β, γ, k, n) ≥ α + γ. Thus,
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(11) implies V/θk,n ≥ α + γ. To see (ii), note that by (13) the threshold θn,n

becomes θn,n = nV/β for α = γ = 0. θn,n thus becomes arbitrarily large as n

increases.

Proof of Proposition 2. The proof of (i) proceeds in two steps. We first show

that it suffices to prove the result for the case α = γ = 0. Then we prove (i)

for this case. Let θ′k,n be the equilibrium threshold with parameters α′ = 0,

γ′ = 0 and β′ = α + β. By the definition of H, we have

H(F, α, β, γ, k, n) ≥ H(F, 0, α + β, 0, k, n).

If θ′k,n < θk,n, then by this inequality we would have

V

θ′k,n
= H(F (θ′k,n), 0, α + β, 0, k, n) ≤ H(F (θk,n), α, β, γ, k, n) =

V

θk,n
,

which is a contradiction. Hence, we have the bound θ′k,n ≥ θk,n and θ′k,n → 0

implies θk,n → 0.

We prove θ′k,n → 0 by contradiction. Suppose (i) is violated for θ′k,n, i.e.

suppose that there exists a subsequence nj of N and ε > 0 such that θ′k,nj
≥

ε > 0 for all j ∈ N. Note that the sum

n∑
i=k

(
n

i

)
pi(1− p)n−i

is monotonically increasing in p for p ∈ [0, 1]. Thus,

nj∑
i=k

(
nj
i

)
F (θ′k,nj

)i(1− F (θ′k,nj
))nj−i ≥

nj∑
i=k

(
nj
i

)
F (ε)i(1− F (ε))nj−i (15)

= 1−
k−1∑
i=0

(
nj
i

)
F (ε)i(1− F (ε))nj−i.

Since ε > 0 implies F (ε) > 0, the right hand side converges to 1:
(
nj

i

)
grows

polynomially in nj and (1 − F (ε))nj−i decays exponentially in nj. Now we

rewrite the equilibrium condition (14) into

β′
∑nj

i=k

(
nj

i

)
F (θ′k,nj

)i(1− F (θ′k,nj
))nj−i(

nj

k

)
F (θ′k,nj

)k(1− F (θ′k,nj
))nj−k

=
kV

θ′k,nj
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and then into

β′
nj∑
i=k

(
nj
i

)
F (θ′k,nj

)i(1− F (θ′k,nj
))nj−i (16)

=
kV

θ′k,nj

(
nj
k

)
F (θ′k,nj

)k(1− F (θ′k,nj
))nj−k

≤ kV

ε

(
nj
k

)
(1− F (ε)))nj−k.

As F (ε) > 0, and as
(
nj

i

)
grows polynomially in nj and (1− F (ε))nj−i decays

exponentially in nj, the final term converges to 0. This is a contradiction as we

proved in (15) that the left hand side of (16) converges to 1. This completes

the proof of (i).

The proof of (ii) proceeds in two similar steps. We first argue that we can

focus on the case in which the diffusive guilt term is absent, and then prove

the result for this case. Let θ′k,n now be the equilibrium threshold for the case

α′ = α + β, γ′ = γ and β′ = 0. By definition,

H(F, α, β, γ, k, n) ≤ H(F, α + β, 0, γ, k, n).

If θ′k,n > θk,n, then by this inequality

V

θk,n
= H(F (θk,n), α, β, γ, k, n) ≤ H(F (θ′k,n), α + β, 0, γ, k, n) =

V

θ′k,n

which is a contradiction. Hence, we have θ′k,n ≤ θk,n, and it suffices to show that

nF (θ′k,n) → ∞. To this end, consider a subsequence nl such that nlF (θ′k,nl
)

converges to a number in c ∈ [0,∞). Now we use that

V

θ′k,n
= γ +

n−1∑
j=k−1

b(n− 1, j, F (θ′k,n))

b(n− 1, k − 1, F (θ′k,n))
(α + β) . (17)
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Calculating the limits for l→∞ results in

lim
l
b(nl − 1, k − 1, F (θ′k,nl

))

= lim
l

(
nl − 1

k − 1

)
F (θ′k,nl

)k−1(1− F (θ′k,nl
))nl−k

= lim
l

(
nl−1
k−1

)
nk−1l

lim
l
nk−1l F (θ′k,nl

)k−1 lim
l

(1− F (θ′k,nl
))nl−k

=
1

(k − 1)!
ck−1 lim

l
(1− F (θ′k,nl

))nl

=
ck−1

(k − 1)!
exp(−c)

and, analogously,

n−1∑
j=k−1

b(n− 1, j, F (θ′k,n)) = 1−
k−2∑
j=0

b(n− 1, j, F (θ′k,n))

→ 1−
k−2∑
j=0

cj

j!
exp(−c).

Hence, along the subsequence, the right hand side of (17) converges to

γ + (α + β)

(
exp(c)−

k−2∑
j=0

cj

j!

)
(k − 1)!

ck−1
.

But, as shown in part (i) of the proposition, the left hand side of (17) diverges

to ∞. This is a contradiction. Hence there exists no such subsequence nl.

Thus nF (θ′k,n)→∞.

It remains to prove (iii). For this purpose, fix k and V and let κ > 0

be arbitrary. By part (ii) of the proposition, nF (θk,n) → ∞. Thus, for n

sufficiently large, nF (θk,n) ≥ κ. As

n∑
i=k

(
n

i

)
pi(1− p)n−i
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is increasing in p for p ∈ [0, 1], we have for sufficiently large n,

Pk,n =
n∑
i=k

(
n

i

)
F (θk,n)i(1− F (θk,n))n−i ≥

n∑
i=k

(
n

i

)(κ
n

)i (
1− κ

n

)n−i

= 1−
k−1∑
i=0

(
n

i

)(κ
n

)i (
1− κ

n

)n−i
. (18)

We also know that for fixed i,

lim
n→∞

(
n

i

)
1

ni
= lim

n→∞

1

i!

i−1∏
j=0

n− j
n

=
1

i!
.

Thus, for n→∞, (18) converges to

1−
k−1∑
i=0

κi

i!
e−κ

which converges to 1 as κ→∞.

Proof of Proposition 3. Throughout the proof, we drop the dependence of H

on (α, β, γ, k, n), writing just H(F ). In the proof of Theorem 1, we saw that

H(F ) is increasing. By assumption, we have H(F (θ)) ≥ H(G(θ)) and thus

V

θFk,n
= H(F (θFk,n)) ≥ H(G(θFk,n)),

implying that θFk,n lies to the left of the unique intersection of V/θ and H(G(θ)).

Accordingly, θFk,n ≤ θGk,n. Moreover,

H(F (θFk,n)) =
V

θFk,n
≥ V

θGk,n
= H(G(θGk,n))

implies F (θFk,n) ≥ G(θGk,n) by the monotonicity of H. The latter inequality

implies the results for Nk,n and Pk,n.

Proof of Proposition 4. The proof extends the one of Proposition 3. Note that

the functions H(F (θ)) and H(G(θ)) inherit the single-crossing property of F

and G. Denote by x0 > 0 a point of intersection of F and G and define

v0 = x0H(F (x0)) such that v0/θ intersects both H(F (θ)) and H(G(θ)) for
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θ = x0. Consequently, for V = v0 we have θFk,n = θGk,n = x0. For V > v0, it

follows that both, θFk,n and θGk,n lie in [x0,∞]. For θ ∈ [x0,∞], we know by the

single-crossing condition that H(F (θ)) ≥ H(G(θ)). For V > v0, it thus follows

as in the proof of Proposition 3 that θFk,n ≤ θGk,n and F (θFk,n) ≥ G(θGk,n), implying

the results about Nk,n and Pk,n. The argument for V < v0 is analogous, using

that the ranking of F and G is reversed on [0, x0].

Proof of Proposition 5. Arguing as in the proof of Theorem 1, best responses

to any non-trivial strategies of the other agents must be threshold strategies.

This implies that equilibria must be in threshold strategies. Consider agent i

of type xi who faces opponents who play a threshold strategy with threshold

θk,n. In determining a symmetric equilibrium in threshold strategies, the main

difference to the proof of Theorem 1 lies in the diffusive part of the expected

cost from voting Yes. We now obtain

P (Y−i ≥ k − 1)
β xi

E[1 + Y−i|Y−i ≥ k − 1]

= B(n− 1, k − 1, F (θk,n))
β xi∑n−1

j=k−1
b(n−1,j,F (θk,n))

B(n−1,k−1,F (θk,n))
(1 + j)

.

For the expected costs of pivotality, we obtain

γP (Y−i ≥ k − 1)P (Y−i = k − 1|Y−i ≥ k − 1) = γb(n− 1, k − 1, F (θk,n))

Modifying the equilibrium condition (11) accordingly shows that equilibria are

now characterized by

V

θ̃k,n
= H̃(F (θ̃k,n), α, β, γ, k, n) (19)

with

H̃(F, α, β, γ, k, n) = α
B(n− 1, k − 1, F )

b(n− 1, k − 1, F )
+ γ (20)

+ β
B(n− 1, k − 1, F )

b(n− 1, k − 1, F )

1∑n−1
j=k−1

b(n−1,j,F )
B(n−1,k−1,F )

(1 + j)
. (21)
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The function H̃(F, α, β, γ, k, n) is continuous in F and satisfies

H̃(0, α, β, γ, k, n) = α +
β

k
+ γ.

Moreover, it is bounded from below by α + β
n

+ γ > 0. The last claim follows

from (20) because of the estimates b(n− 1, k− 1, F ) ≤ B(n− 1, k− 1, F ) and

j+1 ≤ n. As V/θ is arbitrarily large for small θ and arbitrarily small for large

θ, it follows that (19) possesses at least one solution θ̃k,n > 0. To complete

the proof of the proposition, we need to show that any solution θ̃k,n satisfies

θ̃k,n ≥ θk,n. To prove this, we show that H̃(F, α, β, γ, k, n) ≤ H(F, α, β, γ, k, n).

The result then follows from the monotonicity of V/θ in θ. To compare H̃ and

H, it suffices to compare the β-dependent diffusive terms in (5) and (20).

Applying Jensen’s inequality with the convex function h(x) = 1/x and the

probability distribution with probabilities b(n− 1, j, F )/B(n− 1, k − 1, F ) on

k, . . . , n, we find that

B(n− 1, k − 1, F )

b(n− 1, k − 1, F )

1∑n−1
j=k−1

b(n−1,j,F )
B(n−1,k−1,F )

(1 + j)

≤B(n− 1, k − 1, F )

b(n− 1, k − 1, F )

n−1∑
j=k−1

b(n− 1, j, F )

B(n− 1, k − 1, F )

1

1 + j

=
n−1∑
j=k−1

b(n− 1, j, F )

b(n− 1, k − 1, F )

1

1 + j

and thus H̃(F, α, β, γ, k, n) ≤ H(F, α, β, γ, k, n).

Proof of Theorem 2. We begin with claim (i). To simplify the notation, we

define functions h1(θ) and h2(θ) by

h1(θ) =
B(n− 1, k − 1, F (θ))

b(n− 1, k − 1, F (θ))
and h2(θ) =

B(n, k, F (θ))

b(n, k, F (θ))
,

and notice that due to (14), the following identity holds:

H(F (θ), α, β, γ, k, n) = αh1(θ) +
β

k
h2(θ) + γ. (22)

The thresholds θi, i = 1, 2 defined in the proposition solve Li(θi) = 0 where
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the strictly increasing functions Li are given by

Li(θ) = α0hi(θ) + γ − V

θ
.

It follows that for the strictly increasing function

Lw(θ) = wL1(θ) + (1− w)L2(θ), w ∈ (0, 1),

there exists a unique θw with the properties that Lw(θw) = 0 and

min(θ1, θ2) < θw < max(θ1, θ2),

i.e. the unique zero of a convex combination of the strictly increasing functions

h1 and h2 lies between the unique zeros of these functions. It thus remains to

show that θw = θk,n(wα0, k(1− w)α0, γ, V ). This follows from the observation

that by (22),

Lw(θ) = wL1(θ) + (1− w)L2(θ)

= wα0h1(θ) +
k(1− w)α0

k
h2(θ) + γ − V

θ

= H(wα0, k(1− w)α0, γ, V, k, n)− V

θ
.

To see (ii), observe that it follows from (22) that

H(F (θ), 0, δ, 0, k, n) = k ·H(F (θ), δ, 0, 0, k + 1, n+ 1)

which immediately leads to the result. We finally prove (iii). Define the short

notation θ = θk,n(α, β, γ, V ) and θ′ = θk,n(α, 0, γ, V ). By Proposition 1, we

have θ ≤ θ′. Note further that

H(F, α, β, γ, k, n) ≤ H(F, α + β/k, 0, γ, k, n). (23)
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Hence,

V

θ
= H(F (θ), α, β, γ, k, n)

≤ H(F (θ), α + β/k, 0, γ, k, n)

≤
(

1 +
β

kα

)
H(F (θ), α, 0, γ, k, n)

≤
(

1 +
β

kα

)
H(F (θ′), α, 0, γ, k, n)

≤
(

1 +
β

kα

)
V

θ′

which yields θ ≤ θ′ ≤
(
1 + β

kα

)
θ as required.

Proof of Proposition 6. Throughout the proof, we do not use the exact func-

tional form of how guilt depends on the total number y of Yes votes. Instead we

assume that shared guilt takes the form of x/s(y) where x denotes an agent’s

type and s is an increasing, positive function in y. This shortens the notation

and illustrates that the result holds also in this more general setting. In our

case, we have
1

s(y)
= α +

β

y
⇔ s(y) =

1

α + β
y

.

Let us prove the first assertion. We look for θ > 0 where the expected payoff

of voting No is equal to the expected payoff of voting Yes, i.e. we look for

solutions θ > 0 of the equation

V

n−1∑
j=k

b(n−1, j, F (θ)) = V

n−1∑
j=k−1

b(n−1, j, F (θ))−
n−1∑
j=0

θ

s(1 + j)
b(n−1, j, F (θ)),

(24)

i.e.

V b(n− 1, k − 1, F (θ)) =
n−1∑
j=0

θ

s(1 + j)
b(n− 1, j, F (θ)). (25)

The right hand side is nonegative, 0 for θ = 0, and diverges to ∞ for θ →∞.

The left hand side is bounded, continuous in θ and positive for θ > 0. This

implies that for large V there exists at least one nontrivial solution θ > 0 to

this equation. A solution θ of equation (24) is the threshold of a symmetric
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Bayesian equilibrium in which each agent i votes Yes if xi ≤ θ and No if xi > θ

as the expected utility of voting Yes decreases in xi.

Now let us turn to the second assertion. Analogously as in Proposition 1, all

symmetric Bayesian equilibria must be in threshold strategies. The case in

which the threshold is ∞ is trivial. Let us look again at (25). We want to

show that this equation has no solution θ > 0 for small V . For large θ,

V b(n− 1, k − 1, F (θ)) <
n−1∑
j=0

θ

s(1 + j)
b(n− 1, j, F (θ)).

Thus, by continuity in θ, it suffices to show that for small θ > 0 and small V ,

V b(n− 1, k − 1, F (θ)) <
n−1∑
j=0

θ

s(1 + j)
b(n− 1, j, F (θ)).

First note that

θ

s(1)
(1− F (θ))n−1 <

n−1∑
j=0

θ

s(1 + j)
b(n− 1, j, F (θ)) (26)

with

V b(n− 1, k − 1, F (θ)) = V

(
n− 1

k − 1

)
F (θ)k−1(1− F (θ)n−k ≤ V

(
n− 1

k − 1

)
F (θ)

(27)

as k > 1. Now choose V sufficiently small such that V
(
n−1
k−1

)
F ′(0) < 1/s(1)

which implies that

V

(
n− 1

k − 1

)
F (θ) <

θ(1− F (θ))n−1

s(1)

for small θ as F (θ)/θ → F ′(0) and F (θ)→ 0 for θ → 0. This proves the claim.

Now let us turn to the third assertion. Similarly as in (26) and (27), one can

show that

V b(n− 1, k − 1, F (θ)) <
n−1∑
j=0

θ

s(1 + j)
b(n− 1, j, F (θ))
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for a fixed (arbitrary large) V if θ > 0 is small enough. Hence, by continuity

and positivity of both terms for θ > 0, for large V there are at least two

positive solutions to (25) with at least one solution satisfying F (θ) < 1. Thus,

the two solutions correspond to two distinct threshold strategies.

Note that
n−1∑
j=0

1

s(1 + j)
b(n− 1, j, F (θ)) (28)

is weakly decreasing in θ. By linearity, and as the function s(1 + j) is weakly

increasing, this claim can be reduced to the well-known fact that

m∑
j=0

b(n− 1, j, F (θ))

is weakly decreasing in θ for m ≤ n− 1.

Now let us denote by θ̄
(1)
k,n < θ̄

(2)
k,n two solutions of (24) which correspond to

two different threshold strategies, i.e. F (θ̄
(1)
k,n) < F (θ̄

(2)
k,n). We show that the

equilibrium associated with the second threshold strategy strictly Pareto dom-

inates the first. This argument also covers the trivial equilibrium θ̄
(1)
k,n = 0.

Consider an agent of type x ≤ θ̄
(1)
k,n. In both equilibria, voting Yes leads to the

the expected payoffs

V
n−1∑
j=k−1

b(n− 1, j, F (θ̄
(i)
k,n))−

n−1∑
j=0

x

s(1 + j)
b(n− 1, j, F (θ̄

(i)
k,n))

for i ∈ {1, 2}.
The expected payoff is larger in the second equilibrium as the first term is

increasing whereas the second term is weakly decreasing, see (28). The case

θ̄
(2)
k,n < x can be treated similarly. In the case θ̄

(2)
k,n < x ≤ θ̄

(2)
k,n, we have to

compare the expected payoffs

V

n−1∑
j=k

b(n− 1, j, F (θ̄
(1)
k,n))
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and

V

n−1∑
j=k−1

b(n− 1, j, F (θ̄
(2)
k,n))−

n−1∑
j=0

x

s(1 + j)
b(n− 1, j, F (θ̄

(2)
k,n)).

We use F (θ̄
(1)
k,n) < F (θ̄

(2)
k,n) to show that

V
n−1∑
j=k−1

b(n− 1, j, F (θ̄
(2)
k,n))−

n−1∑
j=0

x

s(1 + j)
b(n− 1, j, F (θ̄

(2)
k,n))

≥V
n−1∑
j=k−1

b(n− 1, j, F (θ̄
(2)
k,n))−

n−1∑
j=0

θ̄
(2)
k,n

s(1 + j)
b(n− 1, j, F (θ̄

(2)
k,n))

=V
n−1∑
j=k

b(n− 1, j, F (θ̄
(2)
k,n))

>V
n−1∑
j=k

b(n− 1, j, F (θ̄
(1)
k,n))

which proves the claim.
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[9] Darley, John, and Bibb Latané. Bystander intervention in emergencies:

Diffusion of responsibility. Journal of Personality and Social Psychology,

8, 377-383, 1968.

[10] Deckers, Thomas, Armin Falk, Fabian Kosse, and Nora Szech. Homo

Moralis: Personal Characteristics, Institutions, and Moral Decision-

Making. Working Paper, 2016.

[11] Diamond, Peter, and Joseph Stiglitz. Increases in risk and in risk aversion.

Journal of Economic Theory, 8, 337-360, 1974.

[12] Dufwenberg, Martin, and Amrish Patel. Reciprocity networks and the

participation problem. Games and Economic Behavior, forthcoming, 2015.

[13] Falk, Armin, and Nora Szech. Morals and Markets. Science, 340 (6133),

707-711, 2013.

[14] Falk, Armin, and Nora Szech. Organizations, Diffused Pivotality and Im-

moral Outcomes. Working Paper, 2014.

[15] Fischer, Peter, Joachim Krueger, Tobias Greitemeyer, Claudia Vogrincic,

Andreas Kastenmüller, Dieter Frey, Moritz Heene, Magdalene Wicher,

and Martina Kainbacher. The bystander-effect: a meta-analytic review

on bystander intervention in dangerous and non-dangerous emergencies.

Psychological Bulletin, 137(4): 517-537, 2011.
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